

Malla Reddy College Engineering

(Autonomous)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad, Telangana-500100 www.mrec.ac.in

Department of Information Technology

II B. TECH II SEM (A.Y.2018-19)

Lecture Notes

On

80535 - Cloud Computing

1

CryptDB: Protecting Confidentiality with
Encrypted Query Processing

Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari
Balakrishnan
MIT CSAIL

ABSTRACT

Online applications are vulnerable to theft of
sensitive information because adversaries can
exploit software bugs to gain access to private
data, and because curious or malicious
administrators may capture and leak data.
CryptDB is a system that provides practical and
provable confidentiality in the face of these
attacks for applica- tions backed by SQL
databases. It works by executing SQL queries
over encrypted data using a collection of efficient
SQL-aware en- cryption schemes. CryptDB can
also chain encryption keys to user passwords, so
that a data item can be decrypted only by using
the password of one of the users with access to
that data. As a result, a database administrator
never gets access to decrypted data, and even if
all servers are compromised, an adversary
cannot decrypt the data of any user who is not
logged in. An analysis of a trace of 126 million
SQL queries from a production MySQL server
shows that CryptDB can support operations over
encrypted data for 99.5% of the 128,840 columns
seen in the trace. Our evaluation shows that
CryptDB has low overhead, reducing throughput
by 14.5% for phpBB, a web forum application,
and by 26% for queries from TPC- C, compared
to unmodified MySQL. Chaining encryption keys
to user passwords requires 11–13 unique
schema annotations to secure more than 20
sensitive fields and 2–7 lines of source code
changes for three multi-user web applications.

Categories and Subject Descriptors: H.2.7 [Database
Man- agement]: Database Administration—Security,
integrity, and pro- tection.

[6]; and attackers with physical access to servers
can access all data on disk and in memory [23].

One approach to reduce the damage caused by
server compro- mises is to encrypt sensitive data,
as in SUNDR [28], SPORC [16], and Depot [30],
and run all computations (application logic) on
clients. Unfortunately, several important
applications do not lend themselves to this
approach, including database-backed web sites
that process queries to generate data for the
user, and applications

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SOSP ’11, October 23–26, 2011, Cascais, Portugal.
Copyright 2011 ACM 978-1-4503-0977-6/11/10 . . .
$10.00.

General Terms: Security, design.

1 INTRODUCTION

Theft of private information is a significant
problem, particularly for online applications [40].
An adversary can exploit software vulnerabilities
to gain unauthorized access to servers [32];
curious or malicious administrators at a hosting
or application provider can snoop on private data

2

that compute over large amounts of data. Even
when this approach is tenable, converting an
existing server-side application to this form can
be difficult. Another approach would be to
consider theoret- ical solutions such as fully
homomorphic encryption [19], which allows
servers to compute arbitrary functions over
encrypted data, while only clients see
decrypted data. However, fully homomorphic
encryption schemes are still prohibitively
expensive by orders of magnitude [10, 21].

This paper presents CryptDB, a system that
explores an interme- diate design point to
provide confidentiality for applications that use
database management systems (DBMSes).
CryptDB leverages the typical structure of
database-backed applications, consisting of a
DBMS server and a separate application
server, as shown in Figure 1; the latter runs the
application code and issues DBMS queries on
be- half of one or more users. CryptDB’s
approach is to execute queries over encrypted
data, and the key insight that makes it practical
is that SQL uses a well-defined set of
operators, each of which we are able to support
efficiently over encrypted data.

CryptDB addresses two threats. The first
threat is a curious database administrator (DBA)
who tries to learn private data (e.g., health
records, financial statements, personal
information) by snoop- ing on the DBMS server;
here, CryptDB prevents the DBA from learning
private data. The second threat is an adversary
that gains complete control of application and
DBMS servers. In this case, CryptDB cannot
provide any guarantees for users that are
logged into the application during an attack, but
can still ensure the confi- dentiality of logged-out
users’ data.

There are two challenges in combating these
threats. The first lies in the tension between
minimizing the amount of confidential infor-
mation revealed to the DBMS server and the
ability to efficiently execute a variety of queries.
Current approaches for computing over
encrypted data are either too slow or do not
provide adequate confidentiality, as we discuss
in 9. On the other hand, encrypting data with a
strong and efficient cryptosystem, such as AES,
would prevent the DBMS server from executing
many SQL queries, such as queries that ask for
the number of employees in the “sales” de-
partment or for the names of employees whose

salary is greater than
$60,000. In this case, the only practical solution
would be to give the DBMS server access to the
decryption key, but that would allow an
adversary to also gain access to all data.

The second challenge is to minimize the
amount of data leaked when an adversary
compromises the application server in addition
to the DBMS server. Since arbitrary computation
on encrypted data is not practical, the
application must be able to access decrypted
data. The difficulty is thus to ensure that a
compromised application can obtain only a
limited amount of decrypted data. A na¨ıve
solution of assigning each user a different
database encryption key for their data does not
work for applications with shared data, such as
bulletin boards and conference review sites.

CryptDB addresses these challenges
using three key ideas:

• The first is to execute SQL queries over

encrypted data. CryptDB implements this idea
using a SQL-aware encryption strategy, which
leverages the fact that all SQL queries are
made up of a

§

3

User 1 Threat 1

Threat 2

Password

Active Applicatio Database Unmodified CryptDB
sessio n

User 2

Password Active Annotate Dat Encrypte

(encrypted) key keys: d

Users' Application CryptDB proxy DBMS

Figure 1 : CryptDB’s architecture consisting of two parts: a database proxy and an unmodified DBMS. CryptDB uses user-defined
functions (UDFs) to perform cryptographic operations in the DBMS. Rectangular and rounded boxes represent processes and data,
respectively. Shading indicates components added by CryptDB. Dashed lines indicate separation between users’ computers, the
application server, a server running CryptDB’s database proxy (which is usually the same as the application server), and the DBMS
server. CryptDB addresses two kinds of threats, shown as dotted lines. In threat 1, a curious database administrator with complete
access to the DBMS server snoops on private data, in which case CryptDB prevents the DBA from accessing any private information.
In threat 2, an adversary gains complete control over both the software and hardware of the application, proxy, and DBMS servers, in
which case CryptDB ensures the adversary cannot obtain data belonging to users that are not logged in (e.g., user 2).

well-defined set of primitive operators, such as
equality checks, order comparisons,
aggregates (sums), and joins. By adapt- ing
known encryption schemes (for equality,
additions, and or- der checks) and using a
new privacy-preserving cryptographic method
for joins, CryptDB encrypts each data item in
a way that allows the DBMS to execute on the
transformed data. CryptDB is efficient
because it mostly uses symmetric-key
encryption, avoids fully homomorphic
encryption, and runs on unmodified DBMS
software (by using user-defined functions).

• The second technique is adjustable query-

based encryption. Some encryption schemes
leak more information than others about the
data to the DBMS server, but are required to
process certain queries. To avoid revealing all
possible encryptions of data to the DBMS a
priori, CryptDB carefully adjusts the SQL-aware
encryption scheme for any given data item,
depending on the queries observed at run-time.
To implement these adjust- ments efficiently,
CryptDB uses onions of encryption. Onions are
a novel way to compactly store multiple
ciphertexts within each other in the database
and avoid expensive re-encryptions.

• The third idea is to chain encryption keys to
user passwords, so that each data item in the
database can be decrypted only through a
chain of keys rooted in the password of one of
the users with access to that data. As a result,
if the user is not logged into the application,
and if the adversary does not know the user’s
password, the adversary cannot decrypt the
user’s data, even if the DBMS and the
application server are fully compromised. To
construct a chain of keys that captures the
application’s data privacy and sharing policy,

CryptDB allows the developer to provide policy
annotations over the application’s SQL schema,
specifying which users (or other principals,
such as groups) have access to each data item.

We have implemented CryptDB on both
MySQL and Postgres; our design and most of our
implementation should be applicable to most
standard SQL DBMSes. An analysis of a 10-day
trace of 126 million SQL queries from many
applications at MIT suggests that CryptDB can
support operations over encrypted data for 99.5%
of the 128,840 columns seen in the trace. Our
evaluation shows that CryptDB has low overhead,
reducing throughput by 14.5% for the phpBB web
forum application, and by 26% for queries from
TPC-C, compared to unmodified MySQL. We
evaluated the security of CryptDB on six real
applications (including phpBB, the HotCRP
conference management software [27], and the
OpenEMR medical records application); the
results show that CryptDB protects most sensitive
fields with highly secure encryption schemes.
Chaining encryption keys to user passwords
requires 11–13 unique schema annotations to
enforce privacy policies on more than 20
sensitive

4

fields (including a new policy in HotCRP for
handling papers in conflict with a PC chair)
and 2–7 lines of source code changes for
three multi-user web applications.

The rest of this paper is structured as follows.
In 2, we discuss the threats that CryptDB
defends against in more detail. Then, we
describe CryptDB’s design for encrypted query
processing in 3 and for key chaining to user
passwords in 4. In 5, we present several case
studies of how applications can use CryptDB,
and in 6, we discuss limitations of our design,
and ways in which it can be extended. Next, we
describe our prototype implementation in 7, and
evaluate the performance and security of
CryptDB, as well as the effort required for
application developers to use CryptDB, in §8.
We compare CryptDB to related work in §9 and
conclude in §10.

2 SECURITY OVERVIEW

Figure 1 shows CryptDB’s architecture and
threat models. CryptDB works by intercepting all
SQL queries in a database proxy, which rewrites
queries to execute on encrypted data (CryptDB
assumes that all queries go through the proxy).
The proxy encrypts and decrypts all data, and
changes some query operators, while
preserving the semantics of the query. The
DBMS server never receives decryption keys to
the plaintext so it never sees sensitive data,
ensuring that a curious DBA cannot gain access
to private information (threat 1).

To guard against application, proxy, and
DBMS server compro- mises (threat 2),
developers annotate their SQL schema to
define different principals, whose keys will allow
decrypting different parts of the database. They
also make a small change to their applications
to provide encryption keys to the proxy, as
described in 4. The proxy determines what parts
of the database should be encrypted under what
key. The result is that CryptDB guarantees the
confi- dentiality of data belonging to users that
are not logged in during a compromise (e.g.,
user 2 in Figure 1), and who do not log in until
the compromise is detected and fixed by the
administrator.

Although CryptDB protects data confidentiality,

it does not ensure the integrity, freshness, or

completeness of results returned to the

application. An adversary that compromises the

application, proxy, or DBMS server, or a

malicious DBA, can delete any or all of the data
stored in the database. Similarly, attacks on
user machines, such as cross-site scripting, are
outside of the scope of CryptDB.

We now describe the two threat models
§

addressed by CryptDB, and the security
guarantees provided under those threat models.§

§ §

§ 2.1 Threat 1:

DBMS §

Server
Compromis

e

In this threat, CryptDB guards against a curious
DBA or other exter- nal attacker with full access
to the data stored in the DBMS server. Our goal
is confidentiality (data secrecy), not integrity or
availability. The attacker is assumed to be
passive: she wants to learn confidential

§

5

data, but does not change queries issued by the

application, query results, or the data in the

DBMS. This threat includes DBMS soft- ware

compromises, root access to DBMS machines,

and even access to the RAM of physical

machines. With the rise in database consol-

idation inside enterprise data centers, outsourcing

of databases to public cloud computing

infrastructures, and the use of third-party DBAs,

this threat is increasingly important.

Approach. CryptDB aims to protect data
•
confidentiality against this threat by executing
SQL queries over encrypted data on the DBMS
server. The proxy uses secret keys to encrypt all
data inserted or included in queries issued to the
DBMS. Our approach is to allow the DBMS
server to perform query processing on encrypted
data as it would on an unencrypted database, by
enabling it to compute certain functions over the
data items based on encrypted data. For
example, if the DBMS needs to perform a GROUP
BY on column c, the DBMS server should be able
to determine which items in that column are
equal to each other, but not the actual content of
each item. Therefore, the proxy needs to enable
•

the DBMS server to determine relationships
among data necessary to process a query. By
using SQL-aware encryption that adjusts
dynamically to the queries presented, CryptDB is
careful about what relations it reveals between
tuples to the server. For instance, if the DBMS
needs to perform only a GROUP BYon a column c,

the DBMS server should not know the order of
the items in column c, nor should it know any
other information about other columns. If the
DBMS is required to perform an ORDER BY, or to

find the MAX or MIN, CryptDB reveals the order

of items in that column, but not otherwise.

Guarantees. CryptDB provides confidentiality
for data content and for names of columns and
tables; CryptDB does not hide the overall table
structure, the number of rows, the types of
columns, or the approximate size of data in
bytes. The security of CryptDB is not perfect:
CryptDB reveals to the DBMS server
relationships among data items that correspond
to the classes of computation that queries
perform on the database, such as comparing

items for equality, sorting, or performing
§

 word
search. The granularity at which CryptDB allows
the DBMS to perform a class of computations is an
entire column (or a group of joined columns, for

joins), which means that even if a query requires
equality checks for a few rows, executing that
query on the server would require revealing that
class of computation for an entire column. 3.1
describes how these classes of computation
map to CryptDB’s encryption schemes, and the
information they reveal.

More intuitively, CryptDB provides the following
properties:

• Sensitive data is never available in plaintext at the

DBMS server.

The information revealed to the DBMS server
depends on the classes of computation
required by the application’s queries, subject to
constraints specified by the application
developer in the schema (§3.5.1):

1. If the application requests no relational predicate

filtering on a column, nothing about the data content
leaks (other than its size in bytes).

2. If the application requests equality checks on a column,

CryptDB’s proxy reveals which items repeat in that

column (the histogram), but not the actual values.

3. If the application requests order checks on a column,
the proxy reveals the order of the elements in the
column.

The DBMS server cannot compute the
(encrypted) results for queries that involve
computation classes not requested by the
application.

6

How close is CryptDB to “optimal” security?

Fundamentally, op- timal security is achieved by

recent work in theoretical cryptography enabling

any computation over encrypted data [18];

however, such proposals are prohibitively

impractical. In contrast, CryptDB is prac- tical, and

in 8.3, we demonstrate that it also provides

significant security in practice. Specifically, we

show that all or almost all of the most sensitive

fields in the tested applications remain encrypted

with highly secure encryption schemes. For such

fields, CryptDB provides optimal security,

assuming their value is independent of the pattern

in which they are accessed (which is the case for

medical information, social security numbers, etc).

CryptDB is not optimal for fields requiring more

revealing encryption schemes, but we find that

most such fields are semi-sensitive (such as

timestamps).
Finally, we believe that a passive attack model

is realistic because malicious DBAs are more

likely to read the data, which may be hard to

detect, than to change the data or query results,

which is more likely to be discovered. In 9, we cite

related work on data integrity that could be used

in complement with our work. An active adversary

that can insert or update data may be able to

indirectly compromise confidentiality. For

example, an adversary that modifies an email field

in the database may be able to trick the

application into sending a user’s data to the wrong

email address, when the user asks the application

to email her a copy of her own data. Such active

attacks on the DBMS fall under the second threat

model, which we now discuss.

2.2 Threat 2: Arbitrary
Threats

We now describe the second threat where the
application server, proxy, and DBMS server
infrastructures may be compromised arbi-
trarily. The approach in threat 1 is insufficient
because an adversary can now get access to
the keys used to encrypt the entire database.

The solution is to encrypt different data items

(e.g., data belong- ing to different users) with

different keys. To determine the key that should be

used for each data item, developers annotate the

ap- plication’s database schema to express finer-

grained confidentiality policies. A curious DBA still

cannot obtain private data by snooping on the

DBMS server (threat 1), and in addition,

an adversary who compromises the application
server or the proxy can now decrypt only data of
currently logged-in users (which are stored in
the proxy). Data of currently inactive users
would be encrypted with keys not available to
the adversary, and would remain confidential.

In this configuration, CryptDB provides strong
guarantees in the face of arbitrary server-side
compromises, including those that gain root
access to the application or the proxy. CryptDB
leaks at most the data of currently active users
for the duration of the compromise, even if the

proxy behaves
§

 in a Byzantine fashion. By

“duration of a compromise”, we mean the interval
from the start of the compromise until any trace
of the compromise has been erased from the
system. For a read SQL injection attack, the
duration of the compromise spans the attacker’s
SQL queries. In the above example of an
adversary changing the email address of a user
in the database, we consider the system
compromised for as long as the attacker’s email

§

address persists in the database.

3 QUERIES OVER ENCRYPTED

DATA

This section describes how CryptDB executes

SQL queries over encrypted data. The threat

model in this section is threat 1 from
§2.1. The DBMS machines and administrators

are not trusted, but the application and the
proxy are trusted.

CryptDB enables the DBMS server to execute
SQL queries on encrypted data almost as if it
were executing the same queries on plaintext
data. Existing applications do not need to be
changed. The DBMS’s query plan for an
encrypted query is typically the same as

7

for the original query, except that the operators
comprising the query, such as selections,

projections, joins, aggregates, and orderings, are
performed on ciphertexts, and use modified

operators in some cases. CryptDB’s proxy stores
a secret master key MK, the database schema,

and the current encryption layers of all columns.
The DBMS server sees an anonymized schema

(in which table and col- umn names are replaced
by opaque identifiers), encrypted user data, and

some auxiliary tables used by CryptDB. CryptDB
also equips the server with CryptDB-specific user-

defined functions (UDFs) that
enable the server to compute on ciphertexts

for certain operations. Processing a query in
CryptDB involves four steps:

1. The application issues a query, which the proxy

intercepts and rewrites: it anonymizes each table and
column name, and, using the master key MK, encrypts
each constant in the query with an encryption scheme
best suited for the desired operation (§3.1).

2. The proxy checks if the DBMS server should be given

keys to adjust encryption layers before executing the
query, and if so, issues an UPDATE query at the DBMS
server that invokes a UDF to adjust the encryption layer
of the appropriate columns (§3.2).

3. The proxy forwards the encrypted query to the DBMS

server, which executes it using standard SQL
(occasionally invoking UDFs for aggregation or keyword
search).

4. The DBMS server returns the (encrypted) query result,

which the proxy decrypts and returns to the application.

3.1

We now describe the encryption types that
CryptDB uses, including a number of existing
cryptosystems, an optimization of a recent
scheme, and a new cryptographic primitive for
joins. For each encryption type, we explain the
security property that CryptDB requires from it, its
functionality, and how it is implemented.

Random (RND). RND provides the maximum
security in CryptDB: indistinguishability under an
adaptive chosen-plaintext attack (IND-CPA); the
scheme is probabilistic, meaning that two equal
values are mapped to different ciphertexts with

overwhelming probabilityS.On the other hand, RND
does not allow any compu- tation to be performed

efficiently on the ciphertextQ. An efficient
construction of RND is to use a block cipher like

AES or Blowfish in CBC Lmode together with a

random initialization vector (IV). (We mostly use

AES, except for integer values,- where we use
Blowfish for its 64-bit block size because the 128-bit

block size of AES woulda cause the ciphertext to
be significantly longer).

Since, in this threat model,w CryptDB assumes the server
does not change results, CryptDB does not require a stronger

INDa-CCA2 construction (which would be secure under a

chosen-ciphertext attack). However, it wouldr be
straightforward to use an IND-CCA2- secure implementation
of RND
instead, such as a block cipher in UFE mode [13],

if needed. e
Deterministic (DET). DET has a slightly weaker
guarantee, yet it still provides strong security: it
leaks only which encrypted values correspond to

the same data value, by Edeterministically

8

generating the same ciphertext for the same
plaintext. This encryption layer allows the server
to perform equality checks, which means it can
perform selects with equality predicates, equality
joins, GROUP BY, COUNT, DISTINCT, etc.

In cryptographic terms, DET should be a
pseudo-random permu- tation (PRP) [20]. For 64-
bit and 128-bit values, we use a block cipher with
a matching block size (Blowfish and AES
respectively); we make the usual assumption that
the AES and Blowfish block ciphers are PRPs.
We pad smaller values out to 64 bits, but for data
that is longer than a single 128-bit AES block, the
standard

CBC mode of operation leaks prefix equality
(e.g., if two data items have an identical prefix
that is at least 128 bits long). To avoid this
problem, we use AES with a variant of the CMC
mode [24], which can be approximately thought
of as one round of CBC, followed by another
round of CBC with the blocks in the reverse
order. Since the goal of DET is to reveal equality,
we use a zero IV (or “tweak” [24]) for our AES-
CMC implementation of DET.

Order-preserving encryption (OPE). OPE allows order
rela- tions between data items to be established based on
their en- crypted values, without revealing the data itself. If x
< y, then
OPEK (x) < OPEK (y), for any secret key K.
Therefore, if a column
given encrypted constants OPE (c) and OPE (c) corresponding to the range [Kc ,1 c]. The K
server2 can also perform ORDER BY1, MIN2, is encrypted with OPE, the
server can perform range queries when

MAX, SORT , etc.
OPE is a weaker encryption scheme than DET

because it reveals order. Thus, the CryptDB proxy

will only reveal OPE-encrypted columns to the

server if users request order queries on those

columns. OPE has provable security guarantees

[4]: the encryption is equiva- lent to a random

mapping that preserves order.
The scheme we use [4] is the first provably

secure such scheme. Until CryptDB, there was
no implementation nor any measure of the
practicality of the scheme. The direct
implementation of the scheme took 25 ms per
encryption of a 32-bit integer on an Intel 2.8 GHz
Q9550 processor. We improved the algorithm by
using AVL binary search trees for batch
encryption (e.g., database loads), reducing the
cost of OPE encryption to 7 ms per encryption
without affecting its security. We also
implemented a hypergeometric sampler that lies
at the core of OPE, porting a Fortran
implementation from 1988 [25].

Homomorphic encryption (HOM). HOM is a
secure probabilis- tic encryption scheme (IND-
CPA secure), allowing the server to perform
computations on encrypted data with the final
result de- crypted at the proxy. While fully
homomorphic encryption is pro- hibitively slow
[10], homomorphic encryption for specific
operations is efficient. To support summation, we
implemented the Paillier cryptosystem [35]. With
Paillier, multiplying the encryptions of HOM (x) HOM (y)
= HOM (x + y), where the
multiplicationK isKtwo valuesK results in an encryption of
the sum of the values, i.e., performed· modulo some
public-key value. To compute SUM aggre-

gates, the proxy replaces SUM with calls to a

9

UDF that performs Paillier multiplication on a
column encrypted with HOM. HOM can also be
used for computing averages by having the
DBMS server return the sum and the count
separately, and for incrementing values (e.g.,
SET id=id+1), on which we elaborate shortly.

With HOM, the ciphertext is 2048 bits. In
theory, it should be possible to pack multiple

values from a single row into one HOM × ciphertext for that row, using the scheme of Ge

and Zdonik [17], which would result in an
amortized space overhead of 2 (e.g., a 32-bit
value occupies 64 bits) for a table with many
HOM-encrypted columns. However, we have
not implemented this optimization in our
prototype. This optimization would also
complicate partial- row UPDATEoperations that
reset some—but not all—of the values packed
into a HOM ciphertext.

Join (JOIN and OPE-JOIN). A separate
encryption scheme is necessary to allow
equality joins between two columns, because we
use different keys for DET to prevent cross-
column correlations. JOIN also supports all
operations allowed by DET, and also en- ables
the server to determine repeating values between
two columns. OPE-JOIN enables joins by order
relations. We provide a new cryp- tographic
scheme for JOIN and we discuss it in §3.4.

10

RND: no
SEARCH

RND: no text value
functionality OPE:

functionality DET: order Onion Search

equality selection OPE-JOIN:
HOM: add

JOIN: equality join range
int value

any join any

Onion Eq Onion Ord Onion Add

Figure 2: Onion encryption layers and the classes of
computation they allow. Onion names stand for the operations
they allow at some of their layers (Equality, Order, Search, and
Addition). In practice, some onions or onion layers may be
omitted, depending on column types or §schema annotations
provided by application developers (3.5.2). DET and JOIN are
often merged into a§ single onion layer, since§ JOIN is a
concatenation of DET and JOIN-ADJ (3.4). A random IV for
RND (3.1), shared by the RND layers in Eq and Ord, is also
stored for each data item.

Word search (SEARCH). SEARCH is used to
perform searches on encrypted text to support
operations such as MySQL’s LIKEoper- ator. We

implemented the cryptographic protocol of Song
et al. [46], which was not previously implemented
by the authors; we also use their protocol in a
different way, which results in better security
guarantees. For each column needing SEARCH,
we split the text into keywords using standard
delimiters (or using a special keyword extraction
function specified by the schema developer). We
then remove repetitions in these words,
randomly permute the positions of the words,
and then encrypt each of the words using Song
et al.’s scheme, padding each word to the same
size. SEARCH is nearly as secure as RND: the
encryption does not reveal to the DBMS server
whether a certain word repeats in multiple rows,
but it leaks the number of keywords encrypted
with SEARCH; an adversary may be able to
estimate the number of distinct or duplicate
words (e.g., by comparing the size of the
SEARCH and RND ciphertexts for the same
data).

When the user performs a query such as
SELECT FROM messages WHERE msg LIKE "% alice
%", the proxy gives the DBMS server a token,
which is an encryption of alice. The server cannot
decrypt the token to figure out the underlying
word. Using a user-defined function, the DBMS
server checks if any of the word encryptions in
any message match the token. In our approach,
all the server learns from searching is whether a
token matched a mes- sage or not, and this
happens only for the tokens requested by the
user. The server would learn the same
information when returning the result set to the
users, so the overall search scheme reveals the
minimum amount of additional information
needed to return the result.

Note that SEARCH allows CryptDB to only

perform full-word keyword searches; it cannot
support arbitrary regular expressions. For
applications that require searching for multiple
adjacent words, CryptDB allows the application
developer to disable duplicate re- moval and re-
ordering by annotating the schema, even though this
is not the default. Based on our trace evaluation, we
find that most uses of LIKE can be supported by

SEARCH with such schema an-notations. Of course,
one can still combine multiple LIKEoperators with AND
and OR to check whether multiple independent words

are in the text.

3.2

11

A key part of CryptDB’s design is adjustable
query-based encryp- tion, which dynamically
adjusts the layer of encryption on the DBMS
server. Our goal is to use the most secure
encryption schemes that enable running the
requested queries. For example, if the
application issues no queries that compare data
items in a column, or that sort a

column, the column shoulds be encrypted with RND.

For columns that require equality checks but not

inequality checks,eDET suf- fices. However, the

query set is not always known in
advance. Thus, we need an adaptive scheme

d
that dynamically adjusts encryption strategies.

Our idea is to encrypt each data item in one or
more onions: that is, each value is dressed in
layers of increasingly stronger encryption, as

illustrated in Figures 2 andE 3. Each layer of each
onion enables certain kinds of functionality as

explained in the previousnsubsection. For
example, outermost layers such as RND and HOM

provide maximum security,c whereas inner layers
such as OPE provide more functionality.

Multiple onions are neededr in practice, both because the

compu- tations supported by different encryption schemesy
are not always strictly ordered, and because of performance

considerations (size of ciphertextp and encryption§ time for

nested onion layers). Depending on the type of the data

(and anytannotations provided by the appli- cation

developer on the database schema, as discussed ini3.5.2),

CryptDB may not maintain all onions for each column. For
instance, the Search onion does not make sense for

integers, and the Add onion
o

 does not make sense for

strings.

For each layer of eachnonion, the proxy uses

the same key for encrypting values in the same
column, and different keys across tables,
columns, onions, and onion layers. Using the
same key for all values in a column allows the

proxy
§

 to perform operations on a column
without having to compute separate keys for
each row that will be manipulated. (We use finer-
grained encryption keys in 4 to reduce the
potential amount of data disclosure in case of an
application or proxy server compromise.) Using
different keys across columns prevents the
server from learning any additional relations. All
of these keys are derived from the master key
MK. For example, for table t, column c, onion o,
and encryption layer l, the proxy uses the key

Kt,c,o,l = PRPMK (table t, column c, onion o, layer l), (1) where
PRP is a pseudorandom permutation (e.g., AES).

Each onion starts out encrypted with the most

secure encryption scheme (RND for onions Eq and

Ord, HOM for onion Add, and SEARCH for onion

Search). As the proxy receives SQL queries from

the application, it determines whether layers of

encryption need to be removed. Given a predicate

P on column c needed to execute a query on the

server, the proxy first establishes what onion layer

is needed to compute P on c. If
12 §

the encryption of c is not already at an onion
layer that allows P, the proxy strips off the onion
layers to allow P on c, by sending the
corresponding onion key to the server. The
proxy never decrypts the data past the least-
secure encryption onion layer (or past some
other threshold layer, if specified by the
application developer in the schema, 3.5.1).

CryptDB implements onion layer decryption
using UDFs that run on the DBMS server. For
example, in Figure 3, to decrypt onion Ord of
column 2 in table 1 to layer OPE, the proxy
issues the following query to the server using
the DECRYPT RNDUDF:

UPDATE Table1 SET

C2-Ord = DECRYPT RND(K, C2-Ord, C2-IV)
where K is the appropriate key computed from

Equation (1). At the same time, the proxy
updates its own internal state to remember that

column C2-Ord in Table1 is now at layer OPE
in the DBMS. Each column decryption should be

included in a transaction to avoid consistency
problems with clients accessing columns being

adjusted. Note that onion decryption is
performed entirely by the DBMS server. In the

steady state, no server-side decryptions are
needed, because onion decryption happens

only when a new class of com- putation is
requested on a column. For example, after an

equality

13

Employe Table
es

C1-Eq

C1-Ord
 1

C2-IV C2-Eq C2-Ord C2-Search

ID C1-IV C1-Add

x27c3

x2b82

xcb94

xc2e4 x8a13 xd1e3 x7eb1 Name
Figure 3: Data layout at the server. When the application
creates the table shown on the left, the table created at the
DBMS server is the one shown on the right. Ciphertexts shown
are not full-length.

check is requested on a column and the server
brings the column to layer DET, the column

remains in that state, and future queries with §

equality checks require no decryption. This
property is the insight into why CryptDB’s
overhead is modest in the steady state (see 8):
the server mostly performs typical SQL
processing.

3.3

Table1 WHERE C2-Eq = xbb..4a, where xbb..4a is the Eq onion
encryption of “Bob” using KT1,C2,Eq,JOIN and KT1,C2,Eq,DET.

E
x
e
c
u

Once the onion layers in the DBMS are at the layer

necessary to executet a query, the proxy
transforms the query to operate on these onions. In

particular, the proxy replacesi column names in a
query with corresponding onion names, based on

the class of computationn performed on that
column. For example, for the schema shown in

Figure 3, a reference to theg Name column for an
equality comparison will be replaced with a
reference to the C2-Eq column.

The proxy also replaces each constant in the query

with a corre- spondingo onion encryption of that

constant, based on the compu- tation in which it is
used. For instance, if a query contains WHERE Name =

‘Alice’, the proxy encryptsv ‘Alice’ by successively ap-
plying all encryption layers corresponding to onion

Eqethat have not yet been removed from C2-Eq.

Finally, the server replacesr certain operators with
UDF-based counterparts. For instance, the SUM
aggregate operator and the + column-addition operator
must be replaced with an invocation of a UDF that

performs HOM Eaddition of ciphertexts. Equality and

order operators (such as = and <) do not need such
replacement and can be applied directly to the DET

and OPEn ciphertexts.
Once the proxy has transformed the query, it

sends the query to the DBMSc server, receives
query results (consisting of encrypted data),

14

decrypts the results using the corresponding
onion keys, and sends the decrypted result to the
application.

Read query execution. To understand query
execution over ci- phertexts, consider the
example schema shown in Figure 3. Initially,
each column in the table is dressed in all onions
of encryption, with RND, HOM, and SEARCH as
outermost layers, as shown in Fig- ure 2. At this
point, the server can learn nothing about the data
other than the number of columns, rows, and
data size.

To illustrate when onion layers are removed,
consider the query:

SELECT ID FROM Employees WHERE Name = ‘Alice’,

which requires lowering the encryption of Name
to layer DET. To execute this query, the proxy
first issues the query

UPDATE Table1 SET

C2-Eq = DECRYPT RND(KT1,C2,Eq,RND, C2-Eq, C2-IV),

where column C2 corresponds to Name. The
proxy then issues

SELECT C1-Eq, C1-IV FROM Table1 WHERE C2-Eq = x7..d,

where column C1 corresponds to ID, and where
x7..d is the Eq onion encryption of “Alice” with
keys KT1,C2,Eq,JOIN and KT1,C2,Eq,DET (see Figure 2).
Note that the proxy must request the random IV
from column C1-IVin order to decrypt the RND
ciphertext from C1-Eq. Finally, the proxy
decrypts the results from the server using keys
KT1,C1,Eq,RND, KT1,C1,Eq,DET, and KT1,C1,Eq,JOIN, obtains
the result 23, and returns it to the application.
If the next query is SELECT COUNT() FROM

Employees WHERE Name = ‘Bob’, no server- side
decryptions are necessary, and the proxy
directly issues the query SELECT COUNT() FROM

Write query execution. To support INSERT,
DELETE, and UPDATEqueries, the proxy applies
the same processing to the predi- cates (i.e., the
WHEREclause) as for read queries. DELETEqueries
re- quire no additional processing. For all INSERT
and UPDATEqueries that set the value of a
column to a constant, the proxy encrypts each
inserted column’s value with each onion layer
that has not yet been stripped off in that column.

The remaining case is an UPDATEthat sets a
column value based on an existing column value,
such as salary=salary+1. Such an update would
have to be performed using HOM, to handle
addi-tions. However, in doing so, the values in
the OPE and DET onions would become stale. In
fact, any hypothetical encryption scheme that
simultaneously allows addition and direct
comparison on the ciphertext is insecure: if a
malicious server can compute the order of the
items, and can increment the value by one, the
server can repeatedly add one to each field
homomorphically until it becomes equal to some
other value in the same column. This would allow
the server to compute the difference between
any two values in the database, which is almost
equivalent to knowing their values.

There are two approaches to allow updates
based on existing column values. If a column is
incremented and then only projected (no
comparisons are performed on it), the solution is
simple: when a query requests the value of this
field, the proxy should request the HOM
ciphertext from the Add onion, instead of
ciphertexts from other onions, because the HOM
value is up-to-date. For instance, this approach
applies to increment queries in TPC-C. If a
column is used in comparisons after it is
incremented, the solution is to replace the
update query with two queries: a SELECT of the

old values to be updated, which the proxy
increments and encrypts accordingly, followed
by an UPDATE setting the new values. This

strategy would work well for updates that affect a
small number of rows.

Other DBMS features. Most other DBMS
mechanisms, such as transactions and indexing,
work the same way with CryptDB over encrypted
data as they do over plaintext, with no
modifications. For transactions, the proxy passes
along any BEGIN, COMMIT, and ABORT queries to
the DBMS. Since many SQL operators behave
differently on NULLs than on non-NULL values,
CryptDB exposes NULL values to the DBMS
without encryption. CryptDB does not currently
support stored procedures, although certain stored
procedures could be supported by rewriting their
code in the same way that CryptDB’s proxy
rewrites SQL statements.

The DBMS builds indexes for encrypted data in
15

the same way as for plaintext. Currently, if the

application requests an index on a column, the

proxy asks the DBMS server to build indexes on

that column’s DET, JOIN, OPE, or OPE-JOIN

onion layers (if they are exposed), but not for

RND, HOM, or SEARCH. More efficient index

selection algorithms could be investigated.

equi-join is easy to support: CryptDB

3.4 C

o
m
p

u
t
i
n
g

J
o
i
n

s

There are two kinds of joins supported by
CryptDB: equi-joins, in which the join predicate is
based on equality, and range joins, which involve
order checks. To perform an equi-join of two
encrypted columns, the columns should be
encrypted with the same key so that the server
can see matching values between the two
columns. At the same time, to provide better
privacy, the DBMS server should not be able to
join columns for which the application did not
request a join, so columns that are never joined
should not be encrypted with the same keys.

If the queries that can be issued, or the pairs
of columns that can be joined, are known a priori,

16

can use the DET encryption scheme with the

same key for each group of columns
§

 that are
joined together. 3.5 describes how the proxy
learns the columns to be joined in this case.
However, the challenging case is when the proxy
does not know the set of columns to be joined a

−

priori, and hence does not know which columns

should be encrypted with matching keys.
To solve this problem, we introduce a new

cryptographic primi- tive, JOIN-ADJ (adjustable
join), which allows the DBMS server to adjust the

key of each column at runtime. Intuitively, JOIN-
ADJ can be thought of as a keyed cryptographic

hash with the additional prop- erty that hashes

can be adjusted to change their key without
§

access to the plaintext. JOIN-ADJ is a deterministic

function of its input, which means that if two

plaintexts are equal, the corresponding JOIN-ADJ

values are also equal. JOIN-ADJ is collision-

resistant, and has a sufficiently long output length

(192 bits) to allow us to assume
that collisions never happen in practice. scheme as JOIN(v) =

JOIN-ADJ(v) DET(v),
where denotes con-catenation. This construction allows the proxy to decrypt a JOIN(v)
JOIN-ADJ is non-invertible, so we define the JOIN encryption

column to obtain v by decryptingǁ the DETǁ
component, and allows
the DBMS server to check two JOIN values
for equality by compar- ing the JOIN-ADJ
components.

Each column is initially encrypted at the JOIN
layer using a different key, thus preventing any

joins between columns. When a query requests
a join, the proxy gives the DBMS server an

onion key to adjust the JOIN-ADJ values in one
of the two columns, so that it matches the JOIN-

ADJ key of the other column (denoted the join-
base column). After the adjustment, the

columns share the same JOIN-ADJ key,
allowing the DBMS server to join them for

equality. The DET components of JOIN remain
encrypted with different keys. Note that our
adjustable join is transitive: if the user joins

columns A and B and then joins columns B and
C, the server can join A and

C. However, the server cannot join columns in
different “transitivity groups”. For instance, if
columns D and E were joined together, the

DBMS server would not be able to join columns
A and D on its own. After an initial join query, the

JOIN-ADJ values remain trans- formed with the
same key, so no re-adjustments are needed for
subsequent join queries between the same two

columns. One ex- ception is if the application
issues another query, joining one of the adjusted

columns with a third column, which causes the

proxy to re- adjust the column to another join-base.

To avoid oscillations and to converge to a state

where all columns in a transitivity group share the

same join-base, CryptDB chooses the first column

in lexicographic order on table and column name as

the join-base. For n columns, the

overall maximum number of join transitions is n(n
1)/2.

For range joins, a similar dynamic re-adjustment scheme
is diffi-

cult to construct due to lack of structure in OPE
schemes. Instead, CryptDB requires that pairs of
columns that will be involved in such joins be
declared by the application ahead of time, so that
matching keys are used for layer OPE-JOIN of
those columns; otherwise, the same key will be
used for all columns at layer OPE-JOIN. Fortu-
nately, range joins are rare; they are not used in
any of our example applications, and are used in
only 50 out of 128,840 columns in a large SQL
query trace we describe in 8, corresponding to
just three distinct applications.

tography (ECC). JOIN -ADJK (v) is computed as JOIN-
ADJ construction. Our algorithm uses elliptic-curve cryp-

JOIN-ADJK (v) := PK·PRF
K0

(v)
, (2)

where K is the initial key for that table, column,

onion, and layer, P is
a point on an elliptic curve (being a public

parameter), and PRFK0 is a pseudo-random
function [20] mapping values to a pseudorandom

number, such as AESK0 (SHA(v)), with K0 being a

key that is the

17

same for all columns and derived from MK. The
“exponentiation” is in fact repeated geometric
addition of elliptic curve points; it is considerably
faster than RSA exponentiation.

at the join l ye , the proxy computes ∆K = K/K J
(in an appropriate group) and sendsJ it to the a server.J Then, given JOIN- ADJK (v) (the
query joins columns c and c , each havingWhenkys K

and K J) and ∆K, the
JOIN-ADJ values from column c

DBMS server uses a J

by computing:

UDF to adjust the key in c

(JOIN-ADJKJ (v))
∆K

 = PKJ ·PRFK0 (v)·(K/KJ)

= P
K·PRF

K0
(v)

 = JOIN-ADJK (v).
Now columns c and cJ share the same JOIN-ADJ key,
and the DBMS
server can perform an equi-join on c and cJ
by taking the JOIN-ADJ component of the
JOIN onion ciphertext.

At a high level, the security of this scheme is

that the server cannot infer join relations among

groups of columns that were not requested by

legitimate join queries, and that the scheme does

not reveal the plaintext. We proved the security of

this scheme based on the standard Elliptic-Curve

Decisional Diffie-Hellman hardness as- sumption,

and implemented it using
a NIST-approved elliptic curve. We plan to

publish a more detailed description of this

algorithm and the proof on our web site [37].

Improving Security and
Performance

Although CryptDB can operate with an

unmodified and unannotated schema, as

described above, its security and performance

can be improved through several optional

optimizations, as described below.

Minimum onion layers. Application developers
can specify the lowest onion encryption layer that
may be revealed to the server for a specific
column. In this way, the developer can ensure
that the proxy will not execute queries exposing
sensitive relations to the server. For example,
the developer could specify that credit card
numbers should always remain at RND or DET.

In-proxy processing. Although CryptDB can
evaluate a number of predicates on the server,
evaluating them in the proxy can improve security
by not revealing additional information to the
server. One common use case is a SELECTquery
that sorts on one of the selected columns, without a
LIMITon the number of returned columns. Since the
proxy receives the entire result set from the server,
sorting these results in the proxy does not require a
significant amount of compu- tation, and does not
increase the bandwidth requirements. Doing so
avoids revealing the OPE encryption of that column
to the server.

Training mode. CryptDB provides a training
mode, which allows a developer to provide a
trace of queries and get the resulting onion

3.5.1 encryption layers for each field, along with a
warning in case§

S

 some query is not supported. The

 developer can then examine thee resulting

encryption levels to understandc what each
encryption scheme leaks, as described in 2.1. If

u

some onion level is too low for a sensitive field,

she should arrange to have ther query processed
in the proxy (as described above), or to process

i
the data in some other fashion, such as by using

a local instance of SQLite. t
y

Onion re-encryption. In cases when an
application performs in- frequent queries
requiring a low onion layer (e.g., OPE), CryptDB

I
could be extended to re-encrypt onions back to a

higher layer after the infrequentm query finishes
executing. This approach reduces leak- age to

p

18

attacks happening in the time window when the
data is at the higher onion layer.

19

are not needed (e.g., discard the Ord onion for
3.5.2 P

columns that are not used in range queries, or

discard the Search onion for columnse where
keyword search is not performed), discard onion

r
layers that are not needed (e.g., the adjustable

JOIN layer, if joins are knownfa priori), or discard

the random IV needed for RNDo for some columns.

Ciphertext pre-computing andr caching. The
proxy spends a sig- nificant amount of time
encrypting values used in queriesm with OPE and
HOM. To reduce this cost, the proxy pre-computes
(for HOM) and caches (for OPE)a encryptions of
frequently used constants under different keys.

n

Since HOM is probabilistic, ciphertexts cannot be
reused. Therefore, in addition,c the proxy pre-

computes HOM’s Pail- lier rn randomness values
for future encryptions of any datae. This

optimization reduces the amount of CPU time
spent by the proxy on OPE encryption, and
assuming the proxy is occasionally idle to perform

O

HOM pre-computation, it removes HOM

encryption from the critical path.

Developer annotations. By default, CryptDB
encrypts all fields and creates all applicable
onions for each data item based on its type. If
many columns are not sensitive, the developer
can instead provide explicit annotations
indicating the sensitive fields (as described in
§4), and leave the remaining fields in plaintext.

Known query set. If the developer knows some of
the queries ahead of time, as is the case for many
web applications, the developer can use the
training mode described above to adjust onions to
the correct layer a priori, avoiding the overhead of
runtime onion adjust- ments. If the developer
provides the exact query set, or annotations that
certain functionality is not needed on some
columns, CryptDB can also discard onions that

§

4 MULTIPLEt

PRINCIPALSi
We now extend the threat model to the case when the
application infrastructure and proxy are also

i
untrusted (threat 2). This model is especially

relevant for a multi-user web zsite running a web
and application server. To understand both the

a
problems faced by a multi- user web application

and CryptDB’s solution to these problems,

consider phpBB, a popular onlinei web forum. In
phpBB, each user has an account and a password,
belongs to certain ogroups, and can
send private messages to othern users. Depending on their groups’
permissions, users can read entire

s

forums, only forum names, or not be able to read
a forum at all.

There are several confidentiality guarantees that

would be useful in phpBB. For example, we would

like to ensure that a private message sent from one

user to another is not visible to anyone else; that

posts in a forum are accessible only to users in a

group with access to that forum; and that the name

of a forum is shown only to users belonging

to a group that’s allowed to view it. CryptDB
provides these guarantees in the face of arbitrary
compromises, thereby limiting the damage
caused by a compromise.

Achieving these guarantees requires addressing
two challenges. First, CryptDB must capture the
application’s access control policy for shared data
at the level of SQL queries. To do this, CryptDB
requires developers to annotate their database

20

schema to specify principals and the data that

each principal has access to, as described in 4.1.
The second challenge is to reduce the amount

of information that an adversary can gain by
compromising the system. Our solution limits the
leakage resulting from a compromised
application or proxy server to just the data
accessible to users who were logged in during
the compromise. In particular, the attacker
cannot access the data of users that were not
logged in during the compromise. Leaking the

data of active users in case of a compromise is
unavoidable: given the impracticality of
arbitrary computation on encrypted data, some
data for active users must be decrypted by the
application.

In CryptDB, each user has a key (e.g., her
application-level pass- word) that gives her
access to her data. CryptDB encrypts different
data items with different keys, and enforces the

§

access control policy using chains of keys starting

from user passwords and ending in the encryption

keys of SQL data items, as described in 4.2.
When a user logs in, she provides her password
to the proxy (via the applica- tion). The proxy
uses this password to derive onion keys to
process queries on encrypted data, as presented
in the previous section, and to decrypt the
results. The proxy can decrypt only the data that
the user has access to, based on the access
control policy. The proxy gives the decrypted
data to the application, which can now compute
on it. When the user logs out, the proxy deletes
the user’s key.

4.1 Policy Annotations

To express the data privacy policy of a database-
backed application at the level of SQL queries,
the application developer can annotate the
schema of a database in CryptDB by specifying,
for any subset of data items, which principal has
access to it. A principal is an entity, such as a
user or a group, over which it is natural to specify
an access policy. Each SQL query involving an
annotated data item requires the privilege of the
corresponding principal. CryptDB defines its own
notion of principals instead of using existing
DBMS principals for two reasons: first, many
applications do not map application-level users
to DBMS principals in a sufficiently fine-grained
manner, and second, CryptDB requires explicit
delegation of privileges between principals that is
difficult to extract in an automated way from an
access control list specification.

An application developer annotates the
schema using the three steps described
below and illustrated in Figure 4. In all
examples we show, italics indicate table and
column names, and bold text indicates
annotations added for CryptDB.

Step 1. The developer must define the principal
types (using PRINCTYPE) used in her application,

such as users, groups, or mes- sages. A principal

21

is an instance of a principal type, e.g., principal 5
of type user. There are two classes of principals:
external and internal. External principals
correspond to end users who explicitly
authenticate themselves to the application using
a password. When a user logs into the
application, the application must provide the
user password to the proxy so that the user can
get the privileges of her external principal.
Privileges of other (internal) principals can be
acquired only through delegation, as described
in Step 3. When the user logs out, the
application must inform the proxy, so that the
proxy forgets the user’s password as well as any
keys derived from the user’s password.

Step 2. The developer must specify which
columns in her SQL schema contain sensitive
data, along with the principals that should have
access to that data, using the ENC FOR
annotation. CryptDB requires that for each
private data item in a row, the name of the
principal that should have access to that data be
stored in another column in the same row. For
example, in Figure 4, the decryption of msgtext
x37a21f is available only to principal 5 of type
msg.

Step 3. Programmers can specify rules for
how to delegate the privileges of one principal to
other principals, using the speaks- for relation
[49]. For example, in phpBB, a user should also
have the privileges of the groups she belongs to.
Since many applica- tions store such information
in tables, programmers can specify to CryptDB
how to infer delegation rules from rows in an
existing table. In particular, programmers can
annotate a table T with (a
x) SPEAKS FOR (b y). This annotation indicates that
each row
present in that table specifies that principal a of
type x speaks for

22

PRINCTYPE physical user
EXTERNAL; PRINCTYPE user, msg;

CREATE TABLE privmsgs (

msgid int,
subject varchar(255) ENC FOR (msgid msg),
msgtext text ENC FOR (msgid msg));

CREATE TABLE privmsgs to (msgid

int, rcpt id int, sender id int,
(sender id user) SPEAKS FOR (msgid
msg), (rcpt id user) SPEAKS FOR
(msgid msg));

CREATE TABLE users (

userid int, username varchar(255),
(username physical user) SPEAKS FOR (userid user)
);

Example table contents, without anonymized column

msgid

subject

Table users

msgtext

userid

Table rivmsgs

sender 1 ‘Alice’

 msgid rcpt id 2 ‘Bob’

 id

 5 1 2

Figure 4: Part of phpBB’s schema with annotations to secure
private messages. Only the sender and receiver may see the
private message. An attacker that gains complete access to
phpBB and the DBMS can access private messages of only
currently active users.

principal b of type y, meaning that a has access to

all keys that b has access to. Here, x and y must

always be fixed principal types. Princi- pal b is

always specified by the name of a column in table T

. On the other hand, a can be either the name of

another column in the same table, a constant, or

T2.col, meaning all principals from column col of

table T2. For example, in Figure 4, principal “Bob”

of type physical user speaks for principal 2
of type user, and in Figure 6, all principals§ in the
contactId column from table PCMember (of type
contact) speak for the paperId principal of type
review. Optionally, the programmer can specify a
predicate, whose inputs are values in the same
row, to specify a condition under which
delegation should occur, such as excluding
conflicts in Figure 6. 5 provides more examples
of using annotations to secure applications.

4.2 Key Chaining

Each principal (i.e., each instance of each principal

type) is asso- ciated with a secret, randomly

chosen key. If principal B speaks for principal A (as

a result of some SPEAKS FOR annotation), then

principal A’s key is encrypted using principal B’s

key, and stored as a row in the

special access keys table in the database. This
allows principal B to gain access to principal A’s
key. For example, in Figure 4, to give users 1
and 2 access to message 5, the key of msg 5 is
encrypted with the key of user 1, and also
separately encrypted with the key of user 2.

Each sensitive field is encrypted with the key of
the principal in the ENC FORannotation. CryptDB
encrypts the sensitive field with onions in the
same way as for single-principal CryptDB, except
that onion keys are derived from a principal’s key
as opposed to a global master key.

The key of each principal is a combination of a
symmetric key and a public–private key pair. In
the common case, CryptDB uses the symmetric
key of a principal to encrypt any data and other
principals’ keys accessible to this principal, with
little CPU cost. However, this

23

is not always possible, if some principal is not

currently online. For example, in Figure 4,

suppose Bob sends message 5 to Alice, but Alice

(user 1) is not online. This means that CryptDB

does not have access to user 1’s key, so it will

not be able to encrypt message 5’s key with user

1’s symmetric key. In this case, CryptDB looks up

the public key of the principal (i.e., user 1) in a

second table, public keys, and encrypts message

5’s key using user 1’s public key. When user 1

logs in, she will be able to use the secret key part

of her key to decrypt the key for message 5 (and

re-encrypt it under her symmetric key for future

use).
For external principals (i.e., physical users),

CryptDB assigns a random key just as for any
other principal. To give an external user access
to the corresponding key on login, CryptDB
stores the key of each external principal in a
third table, external keys, encrypted with the
principal’s password. This allows CryptDB to
obtain a user’s key given the user’s password,
and also allows a user to change her password
without changing the key of the principal.

When a table with a SPEAKS FOR relation is
updated, CryptDB must update the access keys
table accordingly. To insert a new row into
access keys for a new SPEAKS FOR relation, the
proxy must have access to the key of the
principal whose privileges are being delegated.
This means that an adversary that breaks into
an application or proxy server cannot create
new SPEAKS FORrelations for principals that are
not logged in, because neither the proxy nor the
adversary have access to their keys. If a SPEAKS
FORrelation is removed, CryptDB revokes
access by removing the corresponding row
from access keys.

When encrypting data in a query or
decrypting data from a result, CryptDB follows
key chains starting from passwords of users
logged in until it obtains the desired keys. As an
optimization, when a user logs in, CryptDB’s
proxy loads the keys of some principals to
which the user has access (in particular, those
principal types that do not have too many
principal instances—e.g., for groups the user is
in, but not for messages the user received).

Applications inform CryptDB of users logging in

or out by issuing INSERT and DELETESQL queries

to a special table cryptdb active that has two
columns, username and password. The proxy
intercepts all queries for cryptdb active, stores the
passwords of logged-in users in memory,

and never reveals them to the DBMS server.

CryptDB guards the data of inactive users at the
time of an attack. If a compromise occurs,
CryptDB provides a bound on the data leaked,

allowing the administrators to not issue§ a

blanket warning to all the users of the system. In
this respect, CryptDB is different from other
approaches to database security (see 9).
However, some special users such as
administrators with access to a large pool of data
enable a larger compromise upon an attack. To
avoid attacks happening when the administrator
is logged in, the administrator should create a
separate user account with restricted
permissions when accessing the application as a
regular user. Also, as good practice, an
application should automatically log out users
who have been inactive for some period of time.

5 APPLICATION CASE STUDIES

In this section, we explain how CryptDB can be
used to secure three existing multi-user web
applications. For brevity, we show simplified
schemas, omitting irrelevant fields and type
specifiers. Overall, we find that once a
programmer specifies the principals in the
application’s schema, and the delegation rules for
them us- ing SPEAKSFOR, protecting additional
sensitive fields just requires additional ENC FOR
annotations.

phpBB is a widely used open source forum
with a rich set of access control settings. Users
are organized in groups; both users and
groups have a variety of access permissions
that the application

24

PRINCTYPE physical user EXTERNAL;
PRINCTYPE user, group, forum post, forum
name;

CREATE TABLE users (userid int, username varchar(255),

(username physical user) SPEAKS FOR (userid user));

CREATE TABLE usergroup (userid int, groupid

int,
(userid user) SPEAKS FOR (groupid group));

CREATE TABLE aclgroups (groupid int, forumid int,
optionid int,

(groupid group) SPEAKS FOR (forumid
forum post) IF optionid=20,

(groupid group) SPEAKS FOR (forumid
forum name) IF optionid=14);

CREATE TABLE posts (postid int, forumid

int,
post text ENC FOR (forumid forum post));

Figure 5: Annotated schema for securing access to posts in
phpBB. A user has access to see the content of posts in a forum
if any of the groups that the user is part of has such
permissions, indicated by optionid 20 in the aclgroups table for
the corresponding forumid and groupid. Similarly, optionid 14
enables users to see the forum’s name.

administrator can choose. We already showed
how to secure private messages between two
users in phpBB in Figure 4. A more detailed case is
securing access to posts, as shown in Figure 5.

This example shows how to use predicates (e.g., IF
optionid=...) to imple- ment a conditional speaks-for

relation on principals, and also how one column
(forumid) can be used to represent multiple
principals (of different type) with different privileges.
There are more ways to gain access to
a post, but we omit them here for brevity.

HotCRP is a popular conference review
application [27]. A key policy for HotCRP is that
PC members cannot see who reviewed their own
(or conflicted) papers. Figure 6 shows CryptDB
annota- tions for HotCRP’s schema to enforce
this policy. Today, HotCRP cannot prevent a
curious or careless PC chair from logging into the
database server and seeing who wrote each
review for a paper that she is in conflict with. As a
result, conferences often set up a second server
to review the chair’s papers or use inconvenient
out- of- band emails. With CryptDB, a PC chair
cannot learn who wrote each review for her
paper, even if she breaks into the application or
database, since she does not have the
decryption key.1 The reason is that the SQL
predicate “NoConflict” checks if a PC member is
conflicted with a paper and prevents the proxy
from providing access to the PC chair in the key
chain. (We assume the PC chair does not modify
the application to log the passwords of other PC
members to subvert the system.)

grad-apply is a graduate admissions system
used by MIT EECS. We annotated its schema to
allow an applicant’s folder to be accessed only by

PRINCTYPE physical user
EXTERNAL; PRINCTYPE contact,
review;

CREATE TABLE ContactInfo (contactId int,
email varchar(120),

(email physical user) SPEAKS FOR (contactId contact));

CREATE TABLE PCMember (contactId int);
CREATE TABLE PaperConflict (paperId int,
contactId int); CREATE TABLE PaperReview (

paperId int,
reviewerId int ENC FOR (paperId review),
commentsToPC text ENC FOR (paperId
review), (PCMember.contactId contact)
SPEAKS FOR

(paperId review) IF NoConflict(paperId, contactId)
);

the respective applicant and any faculty us- ing
(reviewers.reviewer id reviewer), meaning all review-
ers, SPEAKS FOR (candidate id candidate) in table

candi- dates, and ... SPEAKS FOR (letter id letter)in
table let- ters. The applicant can see all of her
folder data except for letters of recommendation.
Overall, grad-apply has simple access control
and therefore simple annotations.

1Fully implementing this policy would require setting up two
PC chairs: a main chair, and a backup chair responsible for
reviews of the main chair’s papers. HotCRP allows the PC chair
to impersonate other PC members, so CryptDB annotations
would be used to prevent the main chair from gaining access to
keys of reviewers assigned to her paper.

25

Figure 6: Annotated schema for securing reviews in HotCRP.
Reviews and the identity of reviewers providing the review will
be available only to PC members (table PCMember includes
PC chairs) who are not conflicted, and PC chairs cannot
override this restriction.

6 DISCUSSION

CryptDB’s design supports most relational
queries and aggregates on standard data
types, such as integers and text/varchar types.
Addi-tional operations can be added to
CryptDB by extending its existing onions, or
adding new onions for specific data types (e.g.,
spatial and multi-dimensional range queries
[43]). Alternatively, in some cases, it may be
possible to map complex unsupported
operation to simpler ones (e.g., extracting the
month out of an encrypted date is easier if the
date’s day, month, and year fields are
encrypted separately).

There are certain computations CryptDB
cannot support on en- crypted data. For
example, it does not support both computation
and comparison on the same column, such as
WHERE salary > age 2+10. CryptDB can process a
part of this query, but it would also require some
processing on the proxy. In CryptDB, such a
query should be (1) rewritten into a sub-query
that selects a whole column, SELECT age 2+10
FROM . . ., which CryptDB computes using HOM,
and (2) re-encrypted in the proxy, creating a
new col- umn (call it aux) on the DBMS server
consisting of the newly en- crypted values.
Finally, the original query with the predicate
WHERE salary > aux should be run. We have not
been affected by this limitation in our test
applications (TPC-C, phpBB, HotCRP, and
grad-apply).

In multi-principal mode, CryptDB cannot
perform server-side computations on values
encrypted for different principals, even if the
application has the authority of all principals in
question, be- cause the ciphertexts are
encrypted with different keys. For some
computations, it may be practical for the proxy
to perform the com- putation after decrypting
the data, but for others (e.g., large-scale
aggregates) this approach may be too
expensive. A possible exten- sion to CryptDB to
support such queries may be to maintain
multiple ciphertexts for such values, encrypted
under different keys.

a Lua module. The C++ library consists of a
query parser; a query encryptor/rewriter, which
encrypts fields or includes UDFs in the query;
and a re-sult decryption module. To allow
applications to transparently use CryptDB, we
used MySQL proxy [47] and implemented a Lua
mod- ule that passes queries and results to and
from our C++ module. We implemented our new
cryptographic protocols using NTL [44]. Our

7 IMPLEMENTATION

The CryptDB proxy consists of a C++ library and

26

 Databases Tables Columns

Complete schema 8,548 177,154 1,244,216
Used in query 1,193 18,162 128,840

Figure 7: Number of databases, tables, and columns on the
sql.mit.edu MySQL server, used for trace analysis, indicating the
total size of the schema, and the part of the schema seen in
queries during the trace period.

CryptDB implementation consists∼ of 18,000 lines ∼ of C++ code and 150 lines ∼of Lua code, with

another 10,000 lines of test code. CryptDB is
portable and we have implemented versions
for both

Postgres 9.0 and MySQL 5.1. Our initial Postgres-

based imple- mentation is described in an earlier

technical report [39]. Porting CryptDB to MySQL

required changing only 86 lines of code, mostly in

the code for connecting to the MySQL server and

declaring UDFs. As mentioned earlier, CryptDB

does not change the DBMS; we implement all

server-side functionality with UDFs and server-side

tables. CryptDB’s design, and to a large extent our

implementation, should work on top of any SQL

DBMS that supports UDFs.

8 EXPERIMENTAL

EVALUATION

In this section, we evaluate four aspects of
CryptDB: the difficulty of modifying an
application to run on top of CryptDB, the types of
queries and applications CryptDB is able to
support, the level of security CryptDB provides,
and the performance impact of using CryptDB.
For this analysis, we use seven applications as
well as a large trace of SQL queries.

We evaluate the effectiveness of our
annotations and the needed application changes§
on the three applications we described in 5
(phpBB, HotCRP, and grad-apply), as well as on
a TPC-C query mix (a standard workload in the
database industry). We then analyze the
functionality and security of CryptDB on three
more applications, on TPC-C, and on a large
trace of SQL queries. The additional three
applications are OpenEMR, an electronic medical
records applica - tion storing private medical data
of patients; the web application of an MIT class
(6.02), storing students’ grades; and PHP-
calendar, storing people’s schedules. The large
trace of SQL queries comes from a popular
MySQL server at MIT, sql.mit.edu. This server is
used primarily by web applications running on
scripts.mit.edu, a shared web application hosting
service operated by MIT’s Student Information
Processing Board (SIPB). In addition, this SQL
server is used by a number of applications that
run on other machines and use sql.mit.eduonly to
store their data. Our query trace spans about ten

days, and includes approximately 126 million
queries. Figure 7 summarizes the schema
statistics for sql.mit.edu; each database is likely
to be a separate instance of some application.

Finally, we evaluate the overall performance
of CryptDB on the

phpBB application and on a query mix from
TPC-C, and perform a detailed analysis through
microbenchmarks.

In the six applications (not counting TPC-C), we
only encrypt sen- sitive columns, according to a
manual inspection. Some fields were clearly
sensitive (e.g., grades, private message, medical
information), but others were only marginally so
(e.g., the time when a message was posted).
There was no clear threshold between sensitive
or not, but it was clear to us which fields were
definitely sensitive. In the case of TPC-C, we
encrypt all the columns in the database in single-
principal mode so that we can study the
performance and functionality of a fully encrypted
DBMS. All fields are considered for encryption in
the large query trace as well.

8.1 Application Changes

Figure 8 summarizes the amount of programmer
effort required to use CryptDB in three multi-
user web applications and in the single-

27

principal TPC-C queries. The results show that,
for multi-principal mode, CryptDB required
between 11 and 13 unique schema annota-
tions (29 to 111 in total), and 2 to 7 lines of code
changes to provide user passwords to the
proxy, in order to secure sensitive information
stored in the database. Part of the simplicity is
because securing an additional column requires
just one annotation in most cases. For the
single-principal TPC-C queries, using CryptDB
required no application annotations at all.

8.2 Functional Evaluation

To evaluate what columns, operations, and
queries CryptDB can support, we analyzed the
queries issued by six web applications
(including the three applications we analyzed
in 8.1), the TPC-C queries, and the SQL
queries from sql.mit.edu. The results are shown
in the left half of Figure 9.

CryptDB supports most queries; the number

of columns in the “needs plaintext” column,
which counts columns that cannot be processed

in encrypted form by CryptDB, is small relative to

the total number of columns. For PHP-calendar

and OpenEMR, CryptDB does not support

queries on certain sensitive fields that perform

string manipulation (e.g., substring and lowercase

conversions) or date manipulation (e.g., obtaining

the day, month, or year of an encrypted date).

However, if these functions were precomputed

with the result added as standalone columns

(e.g., each of the three parts of a date were

encrypted separately), CryptDB would support

these queries.
The next two columns, “needs HOM” and

“needs SEARCH”, reflect the number of
columns for which that encryption scheme is

needed to process some queries. The numbers

suggest that these encryption schemes are

important; without these schemes, CryptDB
would be unable to support those queries.

Based on an analysis of the larger sql.mit.edu
trace, we found that CryptDB should be able to
support operations over all but 1,094 of the
128,840 columns observed in the trace. The “in-
proxy processing” shows analysis results where
we assumed the proxy can perform some
lightweight operations on the results returned from
the DBMS server. Specifically, this included any
operations that are not needed to compute the set
of resulting rows or to aggregate rows (that is,
expressions that do not appear in a WHERE,
HAVING, or GROUP BY clause, or in an ORDER BY
clause with a LIMIT, and are not

aggregate operators). With in-proxy processing,
CryptDB should be able to process queries over
encrypted data over all but 571 of the 128,840
columns, thus supporting 99.5% of the columns.

Of those 571 columns, 222 use a bitwise
operator in a WHERE

clause or perform bitwise aggregation, such as
the Gallery2 applica- tion, which uses a bitmask
of permission fields and consults them in WHERE
clauses. Rewriting the application to store the
permissions in a different way would allow
CryptDB to support such opera- tions. Another
205 columns perform string processing in the
WHERE clause, such as comparing whether
lowercase versions of two strings match. Storing
a keyed hash of the lowercase version of each
string for such columns, similar to the JOIN-ADJ
scheme, could support case-insensitive§ equality
checks for ciphertexts. 76 columns are involved
in mathematical transformations in the WHERE
clause, such as manipulating dates, times,
scores, and geometric coordinates. 41 columns
invoke the LIKE operator with a column reference
for the pattern; this is typically used to check a
particular value against a table storing a list of
banned IP addresses, usernames, URLs, etc.
Such a query can also be rewritten if the data
items are sensitive.

8.3 Security Evaluation

To understand the amount of information that
would be revealed to the adversary in
practice, we examine the steady-state onion
levels of different columns for a range of
applications and queries. To

28

Applicatio

Annotations Login/logout code Sensitive fields secured, and examples of such fields

n phpBB 31 (11 unique) 7 lines 23: private messages (content, subject), posts,

HotCRP forums

grad-apply 29 (12 unique) 2 lines 22: paper content and paper information, reviews
TPC-C (single 111 (13 unique) 2 lines 103: student grades (61), scores (17),

princ.) recommendations, reviews

 0 0 92: all the fields in all the tables encrypted

Figure 8: Number of annotations the programmer needs to add to secure sensitive fields, lines of code to be added to provide
CryptDB with the passwords of users, and the number of sensitive fields that CryptDB secures with these annotations, for three
different applications. We count as one annotation each invocation of our three types of annotations and any SQL predicate used in a
SPEAKS FOR annotation. Since multiple fields in the same table are usually encrypted for the same principal (e.g., message subject and
content), we also report unique annotations.

Application

Total Consider Needs Needs Needs

Non-plaintext cols. with

Most

 cols. for enc. plaintext HOM SEARCH MinEnc: sensitive

 RND SEARCH DET OPE cols. at
 HIGH
phpBB 563 23 0 1 0 21 0 1 1 6 / 6
HotCRP 204 22 0 2 1 18 1 1 2 18 / 18
grad-apply 706 103 0 0 2 95 0 6 2 94 / 94
OpenEMR 1, 297 566 7 0 3 526 2 12 19 525 /
 540
MIT 6.02 15 13 0 0 0 7 0 4 2 1 / 1
PHP-calendar 25 12 2 0 2 3 2 4 1 3 / 4

TPC-C 92 92 0 8 0 65 0 19 8 —
Trace from sql.mit.edu 128, 128, 840 1, 094 1, 019 1, 125 80, 053 350 34, 13, —
 840 212 131

. . . with in-proxy 128, 128, 840 571 1, 016 1, 135 84, 008 398 35, 8, 513 —
processing 840 350
. . . col. name contains 2, 029 2, 029 2 0 0 1, 936 0 91 0 —
pass
. . . col. name contains 2, 521 2, 521 0 0 52 2, 215 52 251 3 —
content
. . . col. name contains priv 173 173 0 4 0 159 0 12 2 —

Figure 9: Steady-state onion levels for database columns required by a range of applications and traces. “Needs plaintext” indicates
that CryptDB cannot execute the application’s queries over encrypted data for that column. For the applications in the top gr oup of
rows, sensitive columns were determined manually, and only these columns were considered for encryption. For the bottom group of
rows, all database columns were automatically considered for encryption. The rightmost column considers the application’s most
sensitive database columns, and reports the number of them that have MinEnc in HIGH (both terms are defined in §8.3).

quantify the level of security, we define the MinEnc

of a column to be the weakest onion encryption

scheme exposed on any of the onions of a column

when onions reach a steady state (i.e., after the

application generates all query types, or after

running the whole trace). We consider RND and

HOM to be the strongest schemes, followed by

SEARCH, followed by DET and JOIN, and finishing

with the weakest scheme which is OPE. For

example, if a column has onion Eq at RND, onion

Ord at OPE and onion Add at HOM, the MinEnc of

this column is OPE.

The right side of Figure 9 shows the MinEnc
onion level for a range of applications and query
traces. We see that most fields remain at RND,
which is the most secure scheme. For example,
OpenEMR has hundreds of sensitive fields
describing the medical conditions and history of
patients, but these fields are mostly just inserted
and fetched, and are not used in any
computation. A num- ber of fields also remain at
DET, typically to perform key lookups and joins.

OPE, which leaks order, is used the least
frequently, and mostly for fields that are marginally
sensitive (e.g., timestamps and counts of
messages). Thus, CryptDB’s adjustable security
pro- vides a significant improvement in
confidentiality over revealing all encryption
schemes to the server.

To analyze CryptDB’s security for specific
columns that are par- ticularly sensitive, we define
a new security level, HIGH, which includes the
RND and HOM encryption schemes, as well as
DET for columns having no repetitions (in which
case DET is logically equivalent to RND). These
are highly secure encryption schemes leaking
virtually nothing about the data. DET for columns
with repeats and OPE are not part of HIGH as
they reveal relations to the DBMS server. The
rightmost column in Figure 9 shows that most of
the particularly sensitive columns (again,
according to manual inspection) are at HIGH.

For the sql.mit.edu trace queries, approximately
6.6% of columns were at OPE even with in-proxy
processing; other en- crypted columns (93%)

29

remain at DET or above. Out of the columns
that were at OPE, 3.9% are used in an ORDER
BY clause with a

LIMIT, 3.7% are used in an inequality comparison
in a WHEREclause, and 0.25% are used in a
MINor MAXaggregate operator (some of the
columns are counted in more than one of these
groups). It would be difficult to perform these
computations in the proxy without substantially
increasing the amount of data sent to it.

Although we could not examine the schemas of
applications us- ing sql.mit.edu to determine what
fields are sensitive—mostly due to its large
scale—we measured the same statistics as above
for columns whose names are indicative of
sensitive data. In particular, the last three rows of
Figure 9 show columns whose name contains the
word “pass” (which are almost all some type of
password), “con- tent” (which are typically bulk
data managed by an application), and “priv”
(which are typically some type of private
message). CryptDB reveals much less
information about these columns than an average
column, almost all of them are supported, and
almost all are at RND or DET.

Finally, we empirically validated CryptDB’s
confidentiality guar- antees by trying real attacks
on phpBB that have been listed in the CVE
database [32], including two SQL injection
attacks (CVE-2009- 3052 & CVE-2008-6314),
bugs in permission checks (CVE-2010- 1627 &
CVE-2008-7143), and a bug in remote PHP file
inclusion (CVE-2008-6377). We found that, for
users not currently logged in, the answers
returned from the DBMS were encrypted; even
with root access to the application server, proxy,
and DBMS, the answers were not decryptable.

8.4 Performance Evaluation

To evaluate the performance of CryptDB, we
used a machine with two 2.4 GHz Intel Xeon
E5620 4-core processors and 12 GB of RAM to
run the MySQL 5.1.54 server, and a machine
with eight 2.4 GHz AMD Opteron 8431 6-core
processors and 64 GB of RAM to run the
CryptDB proxy and the clients. The two
machines were connected over a shared Gigabit
Ethernet network. The higher-provisioned client
machine ensures that the clients are not the
bottleneck in any experiment. All workloads fit in
the server’s RAM.

30

 50000

 40000
se

c

30000

Q u er ie s/

10000
 20000

0
1 2 3 4 5 6 7 8

 MySQL

 Numberofserver cores CryptDB

Figure 10: Throughput for TPC-C queries, for a varying number
of cores on the underlying MySQL DBMS server.

 14000 MySQL

12000

CryptDB

 Strawma

 10000

/ 8000

Q
ue

rie

s 6000

 4000

 2000

 0

Figure 11: Throughput of different types of SQL queries from
the TPC- C query mix running under MySQL, CryptDB, and the
strawman design. “Upd. inc” stands for UPDATE that increments
a column, and “Upd. set” stands for UPDATE which sets columns
to a constant.

8.4.1 TPC

-C

We compare the performance of a TPC-C query
mix when running on an unmodified MySQL
server versus on a CryptDB proxy in front of the§
MySQL server. We trained CryptDB on the query
set (3.5.2) so there are no onion adjustments
during the TPC-C experiments. Figure 10 shows
the throughput of TPC-C queries as the number
of cores on the server varies from one to eight. In
all cases, the server spends 100% of its CPU
time processing queries. Both MySQL and
CryptDB scale well initially, but start to level off
due to internal lock contention in the MySQL
server, as reported by SHOW STATUS LIKE ’Table%’.
The overall throughput with CryptDB is 21 –26%
lower than MySQL, depending on the exact
number of cores.

To understand the sources of CryptDB’s
overhead, we measure the server throughput for
different types of SQL queries seen in TPC-C, on
the same server, but running with only one core
enabled. Figure 11 shows the results for MySQL,
CryptDB, and a strawman design; the strawman
performs each query over data encrypted with RND
by decrypting the relevant data using a UDF,
performing the query over× the plaintext, and

×

 Query (& MySQL CryptDB
 Server

scheme)
 Serve Proxy Proxy×

 r
 Select by = (DET) 0.10 ms 0.11 ms 0.86 0.86

 Select join (JOIN) 0.10 ms 0.11 ms ms ms
 Select range 0.16 ms 0.22 ms 0.75 0.75

 (OPE) Select sum 0.11 ms 0.46 ms ms ms
 (HOM) Delete 0.07 ms 0.08 ms 0.78 28.7

 Insert (all) 0.08 ms 0.10 ms ms ms
Figure 12: Server and proxy latency for different types of SQL
 Update set (all) 0.11 ms 0.14 ms 0.99 0.99

queries from TPC-C. For each query type, we show the
 Update inc 0 .10 ms 0.17 ms ms ms

predominant(HOM) encryption scheme used at the0.28server. 0Due.28 to
details of the TPC-C workload, each query type affects a
different number of rows, and involves a different
re-encrypting the result (if updating rows). The
results show that CryptDB’s throughput penalty is
great- est for queries that involve a SUM (2.0 less
throughput) and for incrementing UPDATE
statements (1.6 less throughput); these are the
queries that involve HOM additions at the server.
For the other types of queries, which form a
larger part of the TPC-C mix, the throughput
overhead is modest. The strawman design
performs poorly for almost all queries because
the DBMS’s indexes on the

31

number of cryptographic operations. The left two columns
correspond to server throughput, which is also shown in Figure
11. “Proxy” shows the latency added by CryptDB’s proxy;
“Proxy×” shows the proxy latency without the ciphertext pre-
computing and caching optimization (3.5). Bold numbers show
where pre-computing and caching ciphertexts helps. The
“Overall” row is the average latency over the mix of TPC-C
queries. “Update set” is an UPDATE where the fields are set to a
constant, and “Update inc” is an UPDATE where some fields are
incremented.

Scheme Encrypt Decrypt Special
 operation
Blowfish (1 int.) 0.0001 ms 0.0001 —
 ms

AES-CBC (1 KB) 0.008 ms 0.007 ms —
AES-CMC (1 KB) 0.016 ms 0.015 ms —
OPE (1 int.) 9.0 ms 9.0 ms Compare: 0 ms
SEARCH (1 word) 0.01 ms 0.004 ms Match: 0.001 ms
HOM (1 int.) 9.7 ms 0.7 ms Add: 0.005 ms
JOIN-ADJ (1 int.) 0.52 ms — Adjust: 0.56 ms

i-User

Web

Applic
ations

§

To evaluate the impact of CryptDB on
application performance, we measure the
throughput of phpBB for a workload with 10
parallel clients, which ensured 100% CPU load
at the server. Each client continuously issued
HTTP requests to browse the forum, write and

Figure 13: Microbenchmarks of cryptographic schemes, per
unit of data encrypted (one 32-bit integer, 1 KB, or one 15-byte
word of text), measured by taking the average time over many
iterations.

RND-encrypted data are useless for operations
on the underlying plaintext data. It is pleasantly
surprising that the higher security of CryptDB
over the strawman also brings better
performance.

To understand the latency introduced by
CryptDB’s proxy, we measure the server and
proxy processing times for the same types of
SQL queries as above. Figure 12 shows the
results. We can see that there is an overall
server latency increase of 20% with CryptDB,
which we consider modest. The proxy adds an
average of 0.60 ms to a query; of that time, 24%
is spent in MySQL proxy, 23% is spent in
encryption and decryption, and the remaining
53% is spent parsing and processing queries. § The cryptographic overhead is relatively small

because most of our encryption schemes are
efficient; Figure 13 shows their performance.
OPE and HOM are the slowest, but the
ciphertext pre-computing and caching
optimization (3.5) masks the high latency of
queries requiring OPE and HOM. Proxy× in
Figure 12 shows the latency without these
optimizations, which is significantly higher for
the corresponding query types. SELECT queries
that involve a SUM use HOM but do not benefit
from this optimization, because the proxy
performs decryption, rather than encryption.

In all TPC-C experiments, the proxy used less
than 20 MB of memory. Caching ciphertexts for
the 30, 000 most common values for OPE
accounts for about 3 MB, and pre-computing
ciphertexts and randomness for 30,000 values
at HOM required 10 MB.

8.4.2 Mult

32

 20

18

-8.3%

-14.5%

/ 16

re
q
.

14

(H
T

TP

12

 10

T
hr

ou
gh

pu
t 8

2

 6

 4

 0

MySQL MySQL+proxy CryptDB

Figure 14: Throughput comparison for phpBB. “MySQL” denotes
phpBB running directly on MySQL. “MySQL+proxy” denotes phpBB
running on an unencrypted MySQL database but going through
MySQL proxy. “CryptDB” denotes phpBB running on CryptDB with
notably sensitive fields annotated and the database appropriately
encrypted. Most HTTP requests involved
tens of SQL queries each. Percentages indicate throughput

reduction relative to MySQL. ×

DB

 Login R post W post R msg W msg

 MySQL 60 ms 50 ms 133 ms 61 ms 237 ms
 CryptDB 67 ms 60 ms 151 ms 73 ms 251 ms

Figure 15: Latency for HTTP requests that heavily use encrypted
fields in phpBB for MySQL and CryptDB. R and W stand for
read and write.

×

read posts, as well as write and read private
messages. We pre-loaded forums and user

mailboxes with messages. In this experiment, we
co-located the MySQL DBMS, the CryptDB
proxy, and the web application server on a

single-core machine, to ensure we do not add
additional resources for a separate proxy server

machine to the system in the CryptDB
configuration. In practice, an administrator would
likely run the CryptDB proxy on another machine

for security. Figure 14 shows the throughput of
phpBB in three different con- figurations: (1)

connecting to a stock MySQL server, (2)
connecting to a stock MySQL server through

MySQL proxy, and (3) connecting to CryptDB,
with notably sensitive fields encrypted as

summarized in Figure 9, which in turn uses a
stock MySQL server to store encrypted data.

The results show that phpBB incurs an overall
throughput loss of just 14.5%, and that about

half of this loss comes from inefficiencies in
MySQL proxy unrelated to CryptDB. Fig- ure 15

further shows the end-to-end latency for five
types of phpBB requests. The results show that

CryptDB adds 7–18 ms (6–20%) of
processing time per request.

secure onion layers, such as RND, is fast, and
needs to be performed
only once per column for the lifetime of the system.2 Removing a
layer of RND requires AES decryption, which our experimental
machine can perform at 200 MB/s per core. Thus, removing an

onion layer is bottlenecked by the speed at which the∼DBMS
server can copy a column from disk for disk-bound databases.

9 RELATED WORK

Search and queries over encrypted data. Song et al. [46]
describe cryptographic tools for performing keyword search
over encrypted data, which we use to implement SEARCH.
Amanatidis et al. [2]

8.4.3 Stora

ge

CryptDB increases the amount of the data stored
in the DBMS, because it stores multiple onions for
the same field, and because ciphertexts are larger
than plaintexts for some encryption schemes. For
TPC-C, CryptDB increased the database size by
3.76 , mostly due to cryptographic expansion of
integer fields encrypted with HOM (which expand
from 32 bits to 2048 bits); strings and binary data
remains roughly the same size. For phpBB, the
database size using an unencrypted system was
2.6 MB for a workload of about 1,000 private
messages and 1,000 forum posts generated by 10
users. The same workload on CryptDB had a
database of 3.3 MB, about 1.2 larger. Of the 0.7
MB increase, 230 KB is for storage of access
keys, 276 KB is for public keys and external keys,
and 166 KB is due to expansion of encrypted
fields.

8.4.4 Adjus

table

Encry

ption

33

propose methods for exact searches that do not
require scanning the entire database and could be
used to process certain restricted SQL queries. Bao
et al. [3] extend these encrypted search methods to
the multi-user case. Yang et al. [51] run selections
with equality predicates over encrypted data.
Evdokimov and Guenther present methods for the
same selections, as well as Cartesian products and
projections [15]. Agrawal et al. develop a statistical
encoding that preserves the order of numerical data
in a column [1], but it does not have sound
cryptographic properties, unlike the scheme we use
[4]. Boneh and Waters show public-key schemes for
comparisons, subset checks, and conjunctions of
such queries over encrypted data [5], but these
schemes have ciphertext lengths that are exponential
in the length of the plaintext, limiting their practical
applicability.

When applied to processing SQL on encrypted data,

these tech- niques suffer from some of the following

limitations: certain basic queries are not supported or

are too inefficient (especially joins and order checks),

they require significant client-side query processing,

users either have to build and maintain indexes on the

data at the server or to perform sequential scans for

every selection/search, and implementing these

techniques requires unattractive changes to the innards

of the DBMS.
Some researchers have developed prototype

systems for subsets of SQL, but they provide no
confidentiality guarantees, require a significant DBMS
rewrite, and rely on client-side processing [9, 12, 22].
For example, Hacigumus et al. [22] heuristically split
the domain of possible values
Adjustable query-based encryption involves
decrypting columns to
lower-security onion levels. Fortunately, decryption for the more- 2Unless the administrator periodically re-encrypts
data/columns.

34

for each column into partitions, storing the
partition number unencrypted for each data item,
and rely on extensive client-side filtering of query
results. Chow et al. [8] require trusted entities
and two non-colluding untrusted DBMSes.

Untrusted servers. SUNDR [28] uses

cryptography to provide privacy and integrity in a file

system on top of an untrusted file server. Using a

SUNDR-like model, SPORC [16] and Depot [30]

show how to build low-latency applications, running

mostly on the clients, without having to trust a

server. However, existing server-side appli-cations

that involve separate database and application

servers cannot be used with these systems unless

they are rewritten as distributed client-side

applications to work with SPORC or Depot. Many

appli- cations are not amenable to such a structure.

Companies like Navajo Systems and
Ciphercloud provide a trusted application-level
proxy that intercepts network traffic be- tween
clients and cloud-hosted servers (e.g., IMAP), and
encrypts sensitive data stored on the server.
These products appear to break up sensitive data
(specified by application-specific rules) into tokens
(such as words in a string), and encrypt each of
these tokens using an order-preserving encryption
scheme, which allows token-level searching and
sorting. In contrast, CryptDB supports a richer set
of operations (most of SQL), reveals only relations
for the necessary classes of computation to the
server based on the queries issued by the
application, and allows chaining of encryption
keys to user passwords, to restrict data leaks from
a compromised proxy.

Disk encryption. Various commercial database

products, such as Oracle’s Transparent Data

Encryption [34], encrypt data on disk, but decrypt it

to perform query processing. As a result, the server

must have access to decryption keys, and an

adversary compromising the DBMS software can

gain access to the entire data.
Software security. Many tools help

programmers either find or mitigate mistakes in
their code that may lead to vulnerabilities,
including static analysis tools like PQL [29, 31]
and UrFlow [7], and runtime tools like Resin [52]
and CLAMP [36]. In contrast, CryptDB provides
confidentiality guarantees for user data even if
the adversary gains complete control over the
application and database servers. These tools
provide no guarantees in the face of this threat,
but in contrast, CryptDB cannot provide
confidentiality in the face of vulnerabilities that
trick the user’s client machine into issuing
unwanted requests (such as cross-site scripting
or cross-site request forgery vulnerabilities in
web applications). As a result, using CryptDB
together with these tools should improve overall
application security.

Rizvi et al. [41] and Chlipala [7] specify and
enforce an applica- tion’s security policy over
SQL views. CryptDB’s SQL annotations can
capture most of these policies, except for result
processing being done in the policy’s view, such
as allowing a user to view only aggregates of
certain data. Unlike prior systems, CryptDB
enforces SQL-level policies cryptographically,
without relying on compile-time or run-time
permission checks.

Privacy-preserving aggregates. Privacy-
preserving data inte- gration, mining, and
aggregation schemes are useful [26, 50], but are
not usable by many applications because they
support only spe- cialized query types and
require a rewrite of the DBMS. Differential
privacy [14] is complementary to CryptDB; it
allows a trusted server to decide what answers
to release and how to obfuscate answers to
aggregation queries to avoid leaking information
about any specific record in the database.

Query integrity. Techniques for SQL query
integrity can be integrated into CryptDB because
CryptDB allows relational queries on encrypted
data to be processed just like on plaintext.
These methods can provide integrity by adding a
MAC to each tuple [28, 42], freshness using
hash chains [38, 42], and both freshness and

completeness of query results [33]. In addition,
the client can verify the results of aggregation
queries [48], and provide query assurance for
most read queries [45].

Outsourced databases. Curino et al. advocate
the idea of a relational cloud [11], a context in
which CryptDB fits well.

10 CONCLUSION

We presented CryptDB, a system that provides a

practical and strong level of confidentiality in the

face of two significant threats con- fronting

database-backed applications: curious DBAs and

arbitrary compromises of the application server and

the DBMS. CryptDB meets its goals using three

ideas: running queries efficiently over encrypted

data using a novel SQL-aware encryption strategy,

dy- namically adjusting the encryption level using

onions of encryption to minimize the information

revealed to the untrusted DBMS server, and

chaining encryption keys to user passwords in a way

that allows only authorized users to gain access to

encrypted data.
Our evaluation on a large trace of 126 million

SQL queries from a production MySQL server

shows that CryptDB can support opera- tions over

encrypted data for 99.5% of the 128,840 columns

seen in the trace. The throughput penalty of

CryptDB is modest, resulting in a reduction of
14.5–26% on two applications as compared to
unmod- ified MySQL. Our security analysis
shows that CryptDB protects most sensitive fields
with highly secure encryption schemes for six
applications. The developer effort consists of 11–
13 unique schema

35

annotations and 2–7 lines of source code
changes to express relevant privacy policies
for 22–103 sensitive fields in three multi-user
web applications.

The source code for our implementation
is available for download at
http://css.csail.mit.edu/cryptdb/.

ACKNOWLEDGMENTS

We thank Martin Abadi, Brad Chen, Carlo
Curino, Craig Harris, Evan Jones, Frans
Kaashoek, Sam Madden, Mike Stonebraker,
Mike Walfish, the anonymous reviewers, and
our shepherd, Adrian Perrig, for their feedback.
Eugene Wu and Alvin Cheung also provided
useful advice. We also thank Geoffrey Thomas,
Quentin Smith, Mitch Berger, and the rest of the
scripts.mit.edu maintainers for providing us with
SQL query traces. This work was supported by
the NSF (CNS-0716273 and IIS-1065219) and
by Google.

REFERENCES

[1]R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order

preserving encryption for numeric data. In Proceedings of
the 2004 ACM SIGMOD International Conference on
Management of Data, Paris, France, June 2004.

[2]G. Amanatidis, A. Boldyreva, and A. O’Neill. Provably-
secure schemes for basic query support in outsourced
databases. In Pro- ceedings of the 21st Annual IFIP WG
11.3 Working Conference on Database and Applications
Security, Redondo Beach, CA, July 2007.

[3]F. Bao, R. H. Deng, X. Ding, and Y. Yang. Private query on
encrypted data in multi-user settings. In Proceedings of the
4th International Conference on Information Security
Practice and Experience, Sydney, Australia, April 2008.

[4]A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. Order-
preserving symmetric encryption. In Proceedings of the
28th Annual International Conference on the Theory
and Applica- tions of Cryptographic Techniques
(EUROCRYPT), Cologne, Germany, April 2009.

[5]D. Boneh and B. Waters. Conjunctive, subset, and
range queries on encrypted data. In Proceedings of the
4th Conference on Theory of Cryptography, 2007.

[6]A. Chen. GCreep: Google engineer stalked teens, spied on
chats.

Gawker, September 2010. http://gawker.com/5637234/.
[7]A. Chlipala. Static checking of dynamically-varying
security

policies in database-backed applications. In Proceedings
of the 9th Symposium on Operating Systems Design and
Implementa- tion, Vancouver, Canada, October 2010.

[8]S. S. M. Chow, J.-H. Lee, and L. Subramanian. Two-party
com- putation model for privacy-preserving queries over
distributed databases. In Proceedings of the 16th
Network and Distributed System Security Symposium,
February 2009.

[9]V. Ciriani, S. D. C. di Vimercati, S. Foresti, S. Jajodia, S.
Para- boschi, and P. Samarati. Keep a few:
Outsourcing data while maintaining confidentiality. In
Proceedings of the 14th Euro- pean Symposium on
Research in Computer Security, September 2009.

[10]M. Cooney. IBM touts encryption innovation; new technology

performs calculations on encrypted data without decrypting
it. Computer World, June 2009.

[11]C. Curino, E. P. C. Jones, R. A. Popa, N. Malviya, E. Wu,
S. Madden, H. Balakrishnan, and N. Zeldovich. Relational
cloud: A database-as-a-service for the cloud. In
Proceedings of the 5th Biennial Conference on Innovative
Data Systems Re- search, pages 235–241, Pacific Grove,
CA, January 2011.

[12]E. Damiani, S. D. C. di Vimercati, S. Jajodia, S.
Paraboschi, and P. Samarati. Balancing confidentiality
and efficiency in un- trusted relational DBMSs. In
Proceedings of the 10th ACM Con- ference on Computer
and Communications Security, Washing- ton, DC,
October 2003.

36

http://css.csail.mit.edu/cryptdb/
http://css.csail.mit.edu/cryptdb/
http://gawker.com/5637234/
http://gawker.com/5637234/

[13]A. Desai. New paradigms for constructing symmetric encryp- tion schemes secure against chosen-ciphertext attack. In Pro- ceedings of the 20th
Annual International Conference on Ad- vances in Cryptology, pages 394–412, August 2000.

[14]C. Dwork. Differential privacy: a survey of results. In Proceed- ings of the 5th International Conference on Theory and Applica- tions of Models of
Computation, Xi’an, China, April 2008.

[15]S. Evdokimov and O. Guenther. Encryption techniques for se- cure database outsourcing. Cryptology ePrint Archive, Report 2007/335.
[16]A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten. SPORC: Group collaboration using untrusted cloud resources. In Proceedings of

the 9th Symposium on Operating Systems De- sign and Implementation, Vancouver, Canada, October 2010.
[17]T. Ge and S. Zdonik. Answering aggregation queries in a secure system model. In Proceedings of the 33rd International Con- ference on Very

Large Data Bases, Vienna, Austria, September 2007.
[18]R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing computation to untrusted workers. In Advances in Cryptology

(CRYPTO), Santa Barbara, CA, August 2010.
[19]C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing,

Bethesda, MD, May–June 2009.

[20]O. Goldreich. Foundations of Cryptography: Volume I Basic Tools. Cambridge University Press, 2001.

[21]A. Greenberg. DARPA will spend 20 million to search for crypto’s holy grail. Forbes, April 2011.
[22]H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data in the database-service-provider model. In Proceedings of the

2002 ACM SIGMOD International Confer- ence on Management of Data, Madison, WI, June 2002.
[23]J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson,

W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum, and
E. W. Felten. Lest we remember: Cold boot attacks on encryp- tion keys. In Proceedings of the 17th Usenix Security Sympo- sium, San Jose, CA,
July–August 2008.

[24]S. Halevi and P. Rogaway. A tweakable enciphering mode. In
Advances in Cryptology (CRYPTO), 2003.

[25]V. Kachitvichyanukul and B. W. Schmeiser. Algorithm 668: H2PEC: Sampling from the hypergeometric distribution. ACM Transactions on
Mathematical Software, 14(4):397–398, 1988.

[26]M. Kantarcioglu and C. Clifton. Security issues in querying encrypted data. In Proceedings of the 19th Annual IFIP
WG 11.3 Working Conference on Database and Applications Secu- rity, Storrs, CT, August 2005.

[27]E. Kohler. Hot crap! In Proceedings of the Workshop on Or- ganizing Workshops, Conferences, and Symposia for Computer Systems, San Francisco,
CA, April 2008.

[28]J. Li, M. Krohn, D. Mazi e`res, and D. Shasha. Secure untrusted data repository (SUNDR). In Proceedings of the 6th Symposium on Operating
Systems Design and Implementation, pages 91– 106, San Francisco, CA, December 2004.

[29]V. B. Livshits and M. S. Lam. Finding security vulnerabilities in Java applications with static analysis. In Proceedings of the 14th Usenix Security
Symposium, pages 271–286, Baltimore, MD, August 2005.

[30]P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and M. Walfish. Depot: Cloud storage with minimal trust. In Proceedings of the
9th Symposium on Operating Systems Design and Implementation, Vancouver, Canada, October 2010.

[31]M. Martin, B. Livshits, and M. Lam. Finding application er- rors and security flaws using PQL: a program query language. In Proceedings of the
2005 Conference on Object-Oriented Pro- gramming, Systems, Languages and Applications, pages 365– 383, San Diego, CA, October 2005.

[32]National Vulnerability Database. CVE statistics. http://web. nvd.nist.gov/view/vuln/statistics, February 2011.

http://web.nvd.nist.gov/view/vuln/statistics
http://web.nvd.nist.gov/view/vuln/statistics

[33]V. H. Nguyen, T. K. Dang, N. T. Son, and J. Kung. Query as- surance verification for dynamic outsourced XML databases. In Proceedings of the
2nd Conference on Availability, Reliability and Security, Vienna, Austria, April 2007.

[34] Oracle Corporation. Oracle advanced security. http:
//www.oracle.com/technetwork/database/options/ advanced-security/.

[35]P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Proceedings of the 18th Annual Inter- national Conference on
the Theory and Applications of Cryp- tographic Techniques (EUROCRYPT), Prague, Czech Republic, May 1999.

[36]B. Parno, J. M. McCune, D. Wendlandt, D. G. Andersen, and
A. Perrig. CLAMP: Practical prevention of large-scale data leaks. In Proceedings of the 30th IEEE Symposium on Security and Privacy, Oakland,
CA, May 2009.

[37]R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakr- ishnan. CryptDB web site. http://css.csail.mit.edu/ cryptdb/.
[38]R. A. Popa, J. R. Lorch, D. Molnar, H. J. Wang, and L. Zhuang.

Enabling security in cloud storage SLAs with CloudProof. In Proceedings of 2011 USENIX Annual Technical Conference, Portland, OR, 2011. [39]R. A.

Popa, N. Zeldovich, and H. Balakrishnan. CryptDB: A practical encrypted relational DBMS. Technical Report MIT- CSAIL-TR-2011-005, MIT

Computer Science and Artificial In- telligence Laboratory, Cambridge, MA, January 2011.
[40]Privacy Rights Clearinghouse. Chronology of data breaches.

http://www.privacyrights.org/data-breach.
[41]S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy. Extending query rewriting techniques for fine-grained access control. In Proceedings of the 2004

ACM SIGMOD International Confer- ence on Management of Data, Paris, France, June 2004.
[42]H. Shacham, N. Modadugu, and D. Boneh. Sirius: Securing remote untrusted storage. In Proceedings of the 10th Network and Distributed System

Security Symposium, 2003.
[43]E. Shi, J. Bethencourt, H. Chan, D. Song, and A. Perrig. Multi- dimensional range query over encrypted data. In Proceedings of the 28th IEEE

Symposium on Security and Privacy, Oakland, CA, May 2007.
[44]V. Shoup. NTL: A library for doing number theory. http:// www.shoup.net/ntl/, August 2009.
[45]R. Sion. Query execution assurance for outsourced databases. In Proceedings of the 31st International Conference on Very Large Data Bases,

pages 601–612, Trondheim, Norway, August– September 2005.
[46]D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted data. In Proceedings of the 21st IEEE Symposium on

Security and Privacy, Oakland, CA, May 2000.
[47]M. Taylor. MySQL proxy. https://launchpad.net/ mysql-proxy.

[48]B. Thompson, S. Haber, W. G. Horne, T. S, and D. Yao. Privacy- preserving computation and verification of aggregate queries on outsourced
databases. Technical Report HPL-2009-119, HP Labs, 2009.

[49]E. P. Wobber, M. Abadi, M. Burrows, and B. Lampson. Au- thentication in the Taos operating system. ACM Transactions on Computer Systems,
12(1):3–32, 1994.

[50]L. Xiong, S. Chitti, and L. Liu. Preserving data privacy for out- sourcing data aggregation services. Technical Report TR-2007- 013, Emory University,
Department of Mathematics and Com- puter Science, 2007.

[51]Z. Yang, S. Zhong, and R. N. Wright. Privacy-preserving queries on encrypted data. In European Symposium on Research in Computer Security,
2006.

[52]A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek. Improving application security with data flow assertions. In Proceedings of the 22nd ACM
Symposium on Operating Systems Principles, pages 291–304, Big Sky, MT, October 2009.

http://www.oracle.com/technetwork/database/options/advanced-security/
http://www.oracle.com/technetwork/database/options/advanced-security/
http://www.oracle.com/technetwork/database/options/advanced-security/
http://css.csail.mit.edu/cryptdb/
http://css.csail.mit.edu/cryptdb/
http://www.privacyrights.org/data-breach
http://www.privacyrights.org/data-breach
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/
https://launchpad.net/mysql-proxy
https://launchpad.net/mysql-proxy

