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ABSTRACT 
 
Online applications are vulnerable to theft of 
sensitive information because adversaries can 
exploit software bugs to gain access to private 
data, and because curious or malicious 
administrators may capture and leak data. 
CryptDB is a system that provides practical and 
provable confidentiality in the face of these 
attacks for applica- tions backed by SQL 
databases. It works by executing SQL queries 
over encrypted data using a collection of efficient 
SQL-aware en- cryption schemes. CryptDB can 
also chain encryption keys to user passwords, so 
that a data item can be decrypted only by using 
the password of one of the users with access to 
that data. As a result, a database administrator 
never gets access to decrypted data, and even if 
all servers are compromised, an adversary 
cannot decrypt the data of any user who is not 
logged in. An analysis of a trace of 126 million 
SQL queries from a production MySQL server 
shows that CryptDB can support operations over 
encrypted data for 99.5% of the 128,840 columns 
seen in the trace. Our evaluation shows that 
CryptDB has low overhead, reducing throughput 
by 14.5% for phpBB, a web forum application, 
and by 26% for queries from TPC- C, compared 
to unmodified MySQL. Chaining encryption keys 
to user passwords requires 11–13 unique 
schema annotations to secure more than 20 
sensitive fields and 2–7 lines of source code 
changes for three multi-user web applications. 
 
Categories and Subject Descriptors: H.2.7 [Database 
Man- agement]: Database Administration—Security, 
integrity, and pro- tection. 

 

 

[6]; and attackers with physical access to servers 
can access all data on disk and in memory [23].  

One approach to reduce the damage caused by 
server compro- mises is to encrypt sensitive data, 
as in SUNDR [28], SPORC [16], and Depot [30], 
and run all computations (application logic) on 
clients. Unfortunately, several important 
applications do not lend themselves to this 
approach, including database-backed web sites 
that process queries to generate data for the 
user, and applications 
 

 
Permission to make digital or hard copies of part or all of this work for 
personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial advantage 
and that copies bear this notice and the full citation on the first page. 
Copyrights for components of this work owned by others than ACM 
must be honored. Abstracting with credit is permitted. To copy 
otherwise, to republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee.  
SOSP ’11, October 23–26, 2011, Cascais, Portugal. 
Copyright  2011  ACM  978-1-4503-0977-6/11/10  . . . 
$10.00. 

 
General Terms: Security, design. 
 

1 INTRODUCTION 
 
Theft of private information is a significant  
problem, particularly for online applications [40].  
An adversary can exploit software vulnerabilities  
to gain unauthorized access to servers [32];  
curious or malicious administrators at a hosting  
or application provider can snoop on private data  
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that compute over large amounts of data. Even 
when this approach is tenable, converting an 
existing server-side application to this form can 
be difficult. Another approach would be to 
consider theoret- ical solutions such as fully 
homomorphic encryption [19], which allows 
servers to compute arbitrary functions over 
encrypted data, while only clients see 
decrypted data. However, fully homomorphic 
encryption schemes are still prohibitively 
expensive by orders of magnitude [10, 21].  

This paper presents CryptDB, a system that 
explores an interme- diate design point to 
provide confidentiality for applications that use 
database management systems (DBMSes). 
CryptDB leverages the typical structure of 
database-backed applications, consisting of a 
DBMS server and a separate application 
server, as shown in Figure 1; the latter runs the 
application code and issues DBMS queries on 
be- half of one or more users. CryptDB’s 
approach is to execute queries over encrypted 
data, and the key insight that makes it practical 
is that SQL uses a well-defined set of 
operators, each of which we are able to support 
efficiently over encrypted data.  

CryptDB addresses two threats. The first 
threat is a curious database administrator (DBA) 
who tries to learn private data (e.g., health 
records, financial statements, personal 
information) by snoop- ing on the DBMS server; 
here, CryptDB prevents the DBA from learning 
private data. The second threat is an adversary 
that gains complete control of application and 
DBMS servers. In this case, CryptDB cannot 
provide any guarantees for users that are 
logged into the application during an attack, but 
can still ensure the confi- dentiality of logged-out 
users’ data.  

There are two challenges in combating these 
threats. The first lies in the tension between 
minimizing the amount of confidential infor-
mation revealed to the DBMS server and the 
ability to efficiently execute a variety of queries. 
Current approaches for computing over 
encrypted data are either too slow or do not 
provide adequate confidentiality, as we discuss 
in 9. On the other hand, encrypting data with a 
strong and efficient cryptosystem, such as AES, 
would prevent the DBMS server from executing 
many SQL queries, such as queries that ask for 
the number of employees in the “sales” de-
partment or for the names of employees whose 

salary is greater than  
$60,000. In this case, the only practical solution 
would be to give the DBMS server access to the 
decryption key, but that would allow an 
adversary to also gain access to all data.  

The second challenge is to minimize the 
amount of data leaked when an adversary 
compromises the application server in addition 
to the DBMS server. Since arbitrary computation 
on encrypted data is not practical, the 
application must be able to access decrypted 
data. The difficulty is thus to ensure that a 
compromised application can obtain only a 
limited amount of decrypted data. A na¨ıve 
solution of assigning each user a different 
database encryption key for their data does not 
work for applications with shared data, such as 
bulletin boards and conference review sites.  

CryptDB addresses these challenges 
using three key ideas: 

 
• The first is to execute SQL queries over 

encrypted data. CryptDB implements this idea 
using a SQL-aware encryption strategy, which 
leverages the fact that all SQL queries are 
made up of a 
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User 1     Threat 1 
  

Threat 2 
  

     

Password      

Active Applicatio Database Unmodified CryptDB 
sessio n     

User 2      

Password  Active Annotate Dat Encrypte 
 

(encrypted) key   keys: d 
    

Users' Application CryptDB proxy  DBMS 
 
Figure 1 : CryptDB’s architecture consisting of two parts: a database proxy and an unmodified DBMS. CryptDB uses user-defined 
functions (UDFs) to perform cryptographic operations in the DBMS. Rectangular and rounded boxes represent processes and data, 
respectively. Shading indicates components added by CryptDB. Dashed lines indicate separation between users’ computers, the 
application server, a server running CryptDB’s database proxy (which is usually the same as the application server), and the DBMS 
server. CryptDB addresses two kinds of threats, shown as dotted lines. In threat 1, a curious database administrator with complete 
access to the DBMS server snoops on private data, in which case CryptDB prevents the DBA from accessing any private information. 
In threat 2, an adversary gains complete control over both the software and hardware of the application, proxy, and DBMS servers, in 
which case CryptDB ensures the adversary cannot obtain data belonging to users that are not logged in (e.g., user 2). 

 

well-defined set of primitive operators, such as 
equality checks, order comparisons, 
aggregates (sums), and joins. By adapt- ing 
known encryption schemes (for equality, 
additions, and or- der checks) and using a 
new privacy-preserving cryptographic method 
for joins, CryptDB encrypts each data item in 
a way that allows the DBMS to execute on the 
transformed data. CryptDB is efficient 
because it mostly uses symmetric-key 
encryption, avoids fully homomorphic 
encryption, and runs on unmodified DBMS 
software (by using user-defined functions). 

 
• The second technique is adjustable query-

based encryption. Some encryption schemes 
leak more information than others about the 
data to the DBMS server, but are required to 
process certain queries. To avoid revealing all 
possible encryptions of data to the DBMS a 
priori, CryptDB carefully adjusts the SQL-aware 
encryption scheme for any given data item, 
depending on the queries observed at run-time. 
To implement these adjust- ments efficiently, 
CryptDB uses onions of encryption. Onions are 
a novel way to compactly store multiple 
ciphertexts within each other in the database 
and avoid expensive re-encryptions.

 
 

• The third idea is to chain encryption keys to 
user passwords, so that each data item in the 
database can be decrypted only through a 
chain of keys rooted in the password of one of 
the users with access to that data. As a result, 
if the user is not logged into the application, 
and if the adversary does not know the user’s 
password, the adversary cannot decrypt the 
user’s data, even if the DBMS and the 
application server are fully compromised. To 
construct a chain of keys that captures the 
application’s data privacy and sharing policy,

 

 

CryptDB allows the developer to provide policy 
annotations over the application’s SQL schema, 
specifying which users (or other principals, 
such as groups) have access to each data item. 

 

We have implemented CryptDB on both 
MySQL and Postgres; our design and most of our 
implementation should be applicable to most 
standard SQL DBMSes. An analysis of a 10-day 
trace of 126 million SQL queries from many 
applications at MIT suggests that CryptDB can 
support operations over encrypted data for 99.5% 
of the 128,840 columns seen in the trace. Our 
evaluation shows that CryptDB has low overhead, 
reducing throughput by 14.5% for the phpBB web 
forum application, and by 26% for queries from 
TPC-C, compared to unmodified MySQL. We 
evaluated the security of CryptDB on six real 
applications (including phpBB, the HotCRP 
conference management software [27], and the 
OpenEMR medical records application); the 
results show that CryptDB protects most sensitive 
fields with highly secure encryption schemes. 
Chaining encryption keys to user passwords 
requires 11–13 unique schema annotations to 
enforce privacy policies on more than 20 
sensitive 
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fields (including a new policy in HotCRP for 
handling papers in conflict with a PC chair) 
and 2–7 lines of source code changes for 
three multi-user web applications.  

The rest of this paper is structured as follows. 
In 2, we discuss the threats that CryptDB 
defends against in more detail. Then, we 
describe CryptDB’s design for encrypted query 
processing in 3 and for key chaining to user 
passwords in 4. In 5, we present several case 
studies of how applications can use CryptDB, 
and in 6, we discuss limitations of our design, 
and ways in which it can be extended. Next, we 
describe our prototype implementation in 7, and 
evaluate the performance and security of 
CryptDB, as well as the effort required for 
application developers to use CryptDB, in §8. 
We compare CryptDB to related work in §9 and 
conclude in §10. 
 

2 SECURITY OVERVIEW 
 
Figure 1 shows CryptDB’s architecture and 
threat models. CryptDB works by intercepting all 
SQL queries in a database proxy, which rewrites 
queries to execute on encrypted data (CryptDB 
assumes that all queries go through the proxy). 
The proxy encrypts and decrypts all data, and 
changes some query operators, while 
preserving the semantics of the query. The 
DBMS server never receives decryption keys to 
the plaintext so it never sees sensitive data, 
ensuring that a curious DBA cannot gain access 
to private information (threat 1).  

To guard against application, proxy, and 
DBMS server compro- mises (threat 2), 
developers annotate their SQL schema to 
define different principals, whose keys will allow 
decrypting different parts of the database. They 
also make a small change to their applications 
to provide encryption keys to the proxy, as 
described in 4. The proxy determines what parts 
of the database should be encrypted under what 
key. The result is that CryptDB guarantees the 
confi- dentiality of data belonging to users that 
are not logged in during a compromise (e.g., 
user 2 in Figure 1), and who do not log in until 
the compromise is detected and fixed by the 
administrator.  

Although CryptDB protects data confidentiality, 

it does not ensure the integrity, freshness, or 

completeness of results returned to the 

application. An adversary that compromises the 

application, proxy, or DBMS server, or a 

malicious DBA, can delete any or all of the data 
stored in the database. Similarly, attacks on 
user machines, such as cross-site scripting, are 
outside of the scope of CryptDB. 

We now describe the two threat models 
§ 

addressed by CryptDB, and the security 
guarantees provided under those threat models.§ 

§ § 

§ 2.1 Threat 1: 
 

DBMS § 
 

Server 
Compromis 

e 
 

In this threat, CryptDB guards against a curious 
DBA or other exter- nal attacker with full access 
to the data stored in the DBMS server. Our goal 
is confidentiality (data secrecy), not integrity or 
availability. The attacker is assumed to be 
passive: she wants to learn confidential 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
§ 
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data, but does not change queries issued by the 

application, query results, or the data in the 

DBMS. This threat includes DBMS soft- ware 

compromises, root access to DBMS machines, 

and even access to the RAM of physical 

machines. With the rise in database consol-

idation inside enterprise data centers, outsourcing 

of databases to public cloud computing 

infrastructures, and the use of third-party DBAs, 

this threat is increasingly important. 
 
Approach. CryptDB aims to protect data 
•  
confidentiality against this threat by executing 
SQL queries over encrypted data on the DBMS 
server. The proxy uses secret keys to encrypt all 
data inserted or included in queries issued to the 
DBMS. Our approach is to allow the DBMS 
server to perform query processing on encrypted 
data as it would on an unencrypted database, by 
enabling it to compute certain functions over the 
data items based on encrypted data. For 
example, if the DBMS needs to perform a GROUP 
BY on column c, the DBMS server should be able 
to determine which items in that column are 
equal to each other, but not the actual content of 
each item. Therefore, the proxy needs to enable 
• 

the DBMS server to determine relationships 
among data necessary to process a query. By 
using SQL-aware encryption that adjusts 
dynamically to the queries presented, CryptDB is 
careful about what relations it reveals between 
tuples to the server. For instance, if the DBMS 
needs to perform only a GROUP BYon a column c, 

the DBMS server should not know the order of 
the items in column c, nor should it know any 
other information about other columns. If the 
DBMS is required to perform an ORDER BY, or to 

find the MAX or MIN, CryptDB reveals the order 

of items in that column, but not otherwise. 
 

Guarantees. CryptDB provides confidentiality 
for data content and for names of columns and 
tables; CryptDB does not hide the overall table 
structure, the number of rows, the types of 
columns, or the approximate size of data in 
bytes. The security of CryptDB is not perfect: 
CryptDB reveals to the DBMS server 
relationships among data items that correspond 
to the classes of computation that queries 
perform on the database, such as comparing  

items for equality, sorting, or performing
§

 word 
search. The granularity at which CryptDB allows 
the DBMS to perform a class of computations is an 
entire column (or a group of joined columns, for 

joins), which means that even if a query requires 
equality checks for a few rows, executing that 
query on the server would require revealing that 
class of computation for an entire column. 3.1 
describes how these classes of computation 
map to CryptDB’s encryption schemes, and the 
information they reveal.  

More intuitively, CryptDB provides the following 
properties: 

 
• Sensitive data is never available in plaintext at the 

DBMS server. 
 

The information revealed to the DBMS server 
depends on the classes of computation 
required by the application’s queries, subject to 
constraints specified by the application 
developer in the schema (§3.5.1): 

 
1. If the application requests no relational predicate 

filtering on a column, nothing about the data content 
leaks (other than its size in bytes). 

 
2. If the application requests equality checks on a column, 

CryptDB’s proxy reveals which items repeat in that 

column (the histogram), but not the actual values. 
 

3. If the application requests order checks on a column, 
the proxy reveals the order of the elements in the 
column. 

 

The DBMS server cannot compute the 
(encrypted) results for queries that involve 
computation classes not requested by the 
application. 
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How close is CryptDB to “optimal” security? 

Fundamentally, op- timal security is achieved by 

recent work in theoretical cryptography enabling 

any computation over encrypted data [18]; 

however, such proposals are prohibitively 

impractical. In contrast, CryptDB is prac- tical, and 

in 8.3, we demonstrate that it also provides 

significant security in practice. Specifically, we 

show that all or almost all of the most sensitive 

fields in the tested applications remain encrypted 

with highly secure encryption schemes. For such 

fields, CryptDB provides optimal security, 

assuming their value is independent of the pattern 

in which they are accessed (which is the case for 

medical information, social security numbers, etc). 

CryptDB is not optimal for fields requiring more 

revealing encryption schemes, but we find that 

most such fields are semi-sensitive (such as 

timestamps).  
Finally, we believe that a passive attack model 

is realistic because malicious DBAs are more 

likely to read the data, which may be hard to 

detect, than to change the data or query results, 

which is more likely to be discovered. In 9, we cite 

related work on data integrity that could be used 

in complement with our work. An active adversary 

that can insert or update data may be able to 

indirectly compromise confidentiality. For 

example, an adversary that modifies an email field 

in the database may be able to trick the 

application into sending a user’s data to the wrong 

email address, when the user asks the application 

to email her a copy of her own data. Such active 

attacks on the DBMS fall under the second threat 

model, which we now discuss. 
 

2.2 Threat 2: Arbitrary 
Threats 

 
We now describe the second threat where the 
application server, proxy, and DBMS server 
infrastructures may be compromised arbi- 
trarily. The approach in threat 1 is insufficient 
because an adversary can now get access to 
the keys used to encrypt the entire database.  

The solution is to encrypt different data items 

(e.g., data belong- ing to different users) with 

different keys. To determine the key that should be 

used for each data item, developers annotate the 

ap- plication’s database schema to express finer-

grained confidentiality policies. A curious DBA still 

cannot obtain private data by snooping on the 

DBMS server (threat 1), and in addition, 

an adversary who compromises the application 
server or the proxy can now decrypt only data of 
currently logged-in users (which are stored in 
the proxy). Data of currently inactive users 
would be encrypted with keys not available to 
the adversary, and would remain confidential.  

In this configuration, CryptDB provides strong 
guarantees in the face of arbitrary server-side 
compromises, including those that gain root 
access to the application or the proxy. CryptDB 
leaks at most the data of currently active users 
for the duration of the compromise, even if the  

proxy behaves
§

 in a Byzantine fashion. By 

“duration of a compromise”, we mean the interval 
from the start of the compromise until any trace 
of the compromise has been erased from the 
system. For a read SQL injection attack, the 
duration of the compromise spans the attacker’s 
SQL queries. In the above example of an 
adversary changing the email address of a user 
in the database, we consider the system 
compromised for as long as the attacker’s email 

§ 

address persists in the database. 
 

3 QUERIES OVER ENCRYPTED 

DATA 
 
This section describes how CryptDB executes 

SQL queries over encrypted data. The threat 

model in this section is threat 1 from  
§2.1. The DBMS machines and administrators 

are not trusted, but the application and the 
proxy are trusted.  

CryptDB enables the DBMS server to execute 
SQL queries on encrypted data almost as if it 
were executing the same queries on plaintext 
data. Existing applications do not need to be 
changed. The DBMS’s query plan for an 
encrypted query is typically the same as 
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for the original query, except that the operators 
comprising the query, such as selections, 

projections, joins, aggregates, and orderings, are 
performed on ciphertexts, and use modified 

operators in some cases. CryptDB’s proxy stores 
a secret master key MK, the database schema, 

and the current encryption layers of all columns. 
The DBMS server sees an anonymized schema 

(in which table and col- umn names are replaced 
by opaque identifiers), encrypted user data, and 

some auxiliary tables used by CryptDB. CryptDB 
also equips the server with CryptDB-specific user-

defined functions (UDFs) that  
enable the server to compute on ciphertexts 

for certain operations. Processing a query in 
CryptDB involves four steps: 

 
1. The application issues a query, which the proxy 

intercepts and rewrites: it anonymizes each table and 
column name, and, using the master key MK, encrypts 
each constant in the query with an encryption scheme 
best suited for the desired operation (§3.1). 

 
2. The proxy checks if the DBMS server should be given 

keys to adjust encryption layers before executing the 
query, and if so, issues an UPDATE query at the DBMS 
server that invokes a UDF to adjust the encryption layer 
of the appropriate columns (§3.2). 

 
3. The proxy forwards the encrypted query to the DBMS 

server, which executes it using standard SQL 
(occasionally invoking UDFs for aggregation or keyword 
search). 

 
4. The DBMS server returns the (encrypted) query result, 

which the proxy decrypts and returns to the application. 

 

3.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

We now describe the encryption types that 
CryptDB uses, including a number of existing 
cryptosystems, an optimization of a recent 
scheme, and a new cryptographic primitive for 
joins. For each encryption type, we explain the 
security property that CryptDB requires from it, its 
functionality, and how it is implemented. 
 
Random (RND). RND provides the maximum 
security in CryptDB: indistinguishability under an 
adaptive chosen-plaintext attack (IND-CPA); the 
scheme is probabilistic, meaning that two equal 
values are mapped to different ciphertexts with 

overwhelming probabilityS.On the other hand, RND 
does not allow any compu- tation to be performed 

efficiently on the ciphertextQ. An efficient 
construction of RND is to use a block cipher like 

AES or Blowfish in CBC Lmode together with a 
 
random initialization vector (IV). (We mostly use 

AES, except for integer values,- where we use 
Blowfish for its 64-bit block size because the 128-bit 

block size of AES woulda cause the ciphertext to 
be significantly longer).  

Since, in this threat model,w CryptDB assumes the server 
does not change results, CryptDB does not require a stronger 

INDa-CCA2 construction (which would be secure under a 

chosen-ciphertext attack). However, it wouldr be 
straightforward to use an IND-CCA2- secure implementation 
of RND 
instead, such as a block cipher in UFE mode [13], 

if needed. e 
Deterministic (DET). DET has a slightly weaker 
guarantee, yet it still provides strong security: it 
leaks only which encrypted values correspond to 

the same data value, by Edeterministically 
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generating the same ciphertext for the same 
plaintext. This encryption layer allows the server 
to perform equality checks, which means it can 
perform selects with equality predicates, equality 
joins, GROUP BY, COUNT, DISTINCT, etc.  

In cryptographic terms, DET should be a 
pseudo-random permu- tation (PRP) [20]. For 64-
bit and 128-bit values, we use a block cipher with 
a matching block size (Blowfish and AES 
respectively); we make the usual assumption that 
the AES and Blowfish block ciphers are PRPs. 
We pad smaller values out to 64 bits, but for data 
that is longer than a single 128-bit AES block, the 
standard 

 

CBC mode of operation leaks prefix equality 
(e.g., if two data items have an identical prefix 
that is at least 128 bits long). To avoid this 
problem, we use AES with a variant of the CMC 
mode [24], which can be approximately thought 
of as one round of CBC, followed by another 
round of CBC with the blocks in the reverse 
order. Since the goal of DET is to reveal equality, 
we use a zero IV (or “tweak” [24]) for our AES-
CMC implementation of DET. 
 
Order-preserving encryption (OPE). OPE allows order 
rela- tions between data items to be established based on 
their en- crypted values, without revealing the data itself. If x 
< y, then  
OPEK (x) < OPEK (y), for any secret key K. 
Therefore, if a column 
given encrypted constants OPE (c ) and OPE (c ) corresponding to the range [Kc ,1 c ]. The K  
server2 can also perform ORDER BY1, MIN2, is encrypted with OPE, the 
server can perform range queries when 

MAX, SORT , etc. 
OPE is a weaker encryption scheme than DET 

because it reveals order. Thus, the CryptDB proxy 

will only reveal OPE-encrypted columns to the 

server if users request order queries on those 

columns. OPE has provable security guarantees 

[4]: the encryption is equiva- lent to a random 

mapping that preserves order.  
The scheme we use [4] is the first provably 

secure such scheme. Until CryptDB, there was 
no implementation nor any measure of the 
practicality of the scheme. The direct 
implementation of the scheme took 25 ms per 
encryption of a 32-bit integer on an Intel 2.8 GHz 
Q9550 processor. We improved the algorithm by 
using AVL binary search trees for batch 
encryption (e.g., database loads), reducing the 
cost of OPE encryption to 7 ms per encryption 
without affecting its security. We also 
implemented a hypergeometric sampler that lies 
at the core of OPE, porting a Fortran 
implementation from 1988 [25]. 
 

Homomorphic encryption (HOM). HOM is a 
secure probabilis- tic encryption scheme (IND-
CPA secure), allowing the server to perform 
computations on encrypted data with the final 
result de- crypted at the proxy. While fully 
homomorphic encryption is pro- hibitively slow 
[10], homomorphic encryption for specific 
operations is efficient. To support summation, we 
implemented the Paillier cryptosystem [35]. With  
Paillier, multiplying the encryptions of HOM (x) HOM (y) 
= HOM (x + y), where the  
multiplicationK isKtwo valuesK results in an encryption of 
the sum of the values, i.e., performed· modulo some 
public-key value. To compute SUM aggre- 

gates, the proxy replaces SUM with calls to a 
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UDF that performs Paillier multiplication on a 
column encrypted with HOM. HOM can also be 
used for computing averages by having the 
DBMS server return the sum and the count 
separately, and for incrementing values (e.g., 
SET id=id+1), on which we elaborate shortly.  

With HOM, the ciphertext is 2048 bits. In 
theory, it should be possible to pack multiple  

values from a single row into one HOM × ciphertext for that row, using the scheme of Ge 
 
and Zdonik [17], which would result in an 
amortized space overhead of 2 (e.g., a 32-bit 
value occupies 64 bits) for a table with many 
HOM-encrypted columns.  However, we have 
not implemented this optimization  in our 
prototype. This optimization would also 
complicate partial- row UPDATEoperations that  
reset some—but not all—of the values packed 
into a HOM ciphertext. 
 

Join (JOIN and OPE-JOIN). A separate  
encryption scheme is necessary to allow  
equality joins between two columns, because we  
use different keys for DET to prevent cross-  
column correlations. JOIN also supports all  
operations allowed by DET, and also en- ables  
the server to determine repeating values between  
two columns. OPE-JOIN enables joins by order  
relations. We provide a new cryp- tographic  
scheme for JOIN and we discuss it in §3.4. 
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RND: no 
SEARCH 

RND: no text value 
functionality OPE:   

functionality DET: order Onion Search 

equality selection OPE-JOIN: 
HOM: add 

 

JOIN: equality join range 
int value 

any join any  

Onion Eq Onion Ord Onion Add  
 
Figure 2: Onion encryption layers and the classes of 
computation they allow. Onion names stand for the operations 
they allow at some of their layers (Equality, Order, Search, and 
Addition). In practice, some onions or onion layers may be 
omitted, depending on column types or §schema annotations 
provided by application developers ( 3.5.2). DET and JOIN are 
often merged into a§ single onion layer, since§ JOIN is a 
concatenation of DET and JOIN-ADJ ( 3.4). A random IV for 
RND ( 3.1), shared by the RND layers in Eq and Ord, is also 
stored for each data item. 

 

Word search (SEARCH). SEARCH is used to 
perform searches on encrypted text to support 
operations such as MySQL’s LIKEoper- ator. We 

implemented the cryptographic protocol of Song 
et al. [46], which was not previously implemented 
by the authors; we also use their protocol in a 
different way, which results in better security 
guarantees. For each column needing SEARCH, 
we split the text into keywords using standard 
delimiters (or using a special keyword extraction 
function specified by the schema developer). We 
then remove repetitions in these words, 
randomly permute the positions of the words, 
and then encrypt each of the words using Song 
et al.’s scheme, padding each word to the same 
size. SEARCH is nearly as secure as RND: the 
encryption does not reveal to the DBMS server 
whether a certain word repeats in multiple rows, 
but it leaks the number of keywords encrypted 
with SEARCH; an adversary may be able to 
estimate the number of distinct or duplicate 
words (e.g., by comparing the size of the 
SEARCH and RND ciphertexts for the same 
data).  

When the user performs a query such as  
SELECT FROM messages WHERE msg LIKE "% alice 
%", the proxy gives the DBMS server a token, 
which is an encryption of alice. The server cannot 
decrypt the token to figure out the underlying 
word. Using a user-defined function, the DBMS 
server checks if any of the word encryptions in 
any message match the token. In our approach, 
all the server learns from searching is whether a 
token matched a mes- sage or not, and this 
happens only for the tokens requested by the 
user. The server would learn the same 
information when returning the result set to the 
users, so the overall search scheme reveals the 
minimum amount of additional information 
needed to return the result.  

Note that SEARCH allows CryptDB to only 

perform full-word keyword searches; it cannot 
support arbitrary regular expressions. For 
applications that require searching for multiple 
adjacent words, CryptDB allows the application 
developer to disable duplicate re- moval and re-
ordering by annotating the schema, even though this 
is not the default. Based on our trace evaluation, we 
find that most uses of LIKE can be supported by 

SEARCH with such schema an-notations. Of course, 
one can still combine multiple LIKEoperators with AND 
and OR to check whether multiple independent words 

are in the text. 

 

3.2 
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A key part of CryptDB’s design is adjustable 
query-based encryp- tion, which dynamically 
adjusts the layer of encryption on the DBMS 
server. Our goal is to use the most secure 
encryption schemes that enable running the 
requested queries. For example, if the 
application issues no queries that compare data 
items in a column, or that sort a 

column, the column shoulds be encrypted with RND. 

For columns that require equality checks but not 

inequality checks,eDET suf- fices. However, the 

query set is not always known in 
advance. Thus, we need an adaptive scheme 

d 
that dynamically adjusts encryption strategies. 

Our idea is to encrypt each data item in one or  
more onions: that is, each value is dressed in 
layers of increasingly stronger encryption, as 

illustrated in Figures 2 andE 3. Each layer of each 
onion enables certain kinds of functionality as 

explained in the previousnsubsection. For 
example, outermost layers such as RND and HOM 

provide maximum security,c whereas inner layers 
such as OPE provide more functionality.  

Multiple onions are neededr in practice, both because the 

compu- tations supported by different encryption schemesy 
are not always strictly ordered, and because of performance 

considerations (size of ciphertextp and encryption§ time for 

nested onion layers). Depending on the type of the data 

(and anytannotations provided by the appli- cation 

developer on the database schema, as discussed ini3.5.2), 

CryptDB may not maintain all onions for each column. For 
instance, the Search onion does not make sense for 

integers, and the Add onion
o

 does not make sense for 

strings.  

For each layer of eachnonion, the proxy uses 

the same key for encrypting values in the same 
column, and different keys across tables, 
columns, onions, and onion layers. Using the 
same key for all values in a column allows the 

proxy
§

 to perform operations on a column 
without having to compute separate keys for 
each row that will be manipulated. (We use finer-
grained encryption keys in 4 to reduce the 
potential amount of data disclosure in case of an 
application or proxy server compromise.) Using 
different keys across columns prevents the 
server from learning any additional relations. All 
of these keys are derived from the master key 
MK. For example, for table t, column c, onion o, 
and encryption layer l, the proxy uses the key  

Kt,c,o,l = PRPMK (table t, column c, onion o, layer l ), (1) where 
PRP is a pseudorandom permutation (e.g., AES).  

Each onion starts out encrypted with the most 

secure encryption scheme (RND for onions Eq and 

Ord, HOM for onion Add, and SEARCH for onion 

Search). As the proxy receives SQL queries from 

the application, it determines whether layers of 

encryption need to be removed. Given a predicate 

P on column c needed to execute a query on the 

server, the proxy first establishes what onion layer 

is needed to compute P on c. If  
12 § 



the encryption of c is not already at an onion  
layer that allows P, the proxy strips off the onion  
layers to allow P on c, by sending the  
corresponding onion key to the server. The  
proxy never decrypts the data past the least-  
secure encryption onion layer (or past some  
other threshold layer, if specified by the  
application developer in the schema, 3.5.1).  

CryptDB implements onion layer decryption 
using UDFs that run on the DBMS server. For 
example, in Figure 3, to decrypt onion Ord of 
column 2 in table 1 to layer OPE, the proxy  
issues the following query to the server using 
the DECRYPT RNDUDF: 
 
UPDATE Table1 SET  

C2-Ord = DECRYPT RND(K, C2-Ord, C2-IV)   
where K is the appropriate key computed from  

Equation (1). At the same time, the proxy  
updates its own internal state to remember that  

column C2-Ord in Table1 is now at layer OPE  
in the DBMS. Each column decryption should be  

included in a transaction to avoid consistency  
problems with clients accessing columns being  

adjusted. Note that onion decryption is  
performed entirely by the DBMS server. In the  

steady state, no server-side decryptions are  
needed, because onion decryption happens  

only when a new class of com- putation is  
requested on a column. For example, after an  

equality 
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Employe        Table 
es   

 

C1-Eq 
 

C1-Ord 
 1 

C2-IV C2-Eq C2-Ord C2-Search 
    

ID   C1-IV    C1-Add 
  

 

x27c3 
 

x2b82 
 

xcb94 
 

xc2e4 x8a13 xd1e3   x7eb1 Name   
Figure 3: Data layout at the server. When the application 
creates the table shown on the left, the table created at the 
DBMS server is the one shown on the right. Ciphertexts shown 
are not full-length. 

 

check is requested on a column and the server 
brings the column to layer DET, the column 

remains in that state, and future queries with § 

equality checks require no decryption. This 
property is the insight into why CryptDB’s 
overhead is modest in the steady state (see 8): 
the server mostly performs typical SQL 
processing. 

 

3.3 

 
Table1 WHERE C2-Eq = xbb..4a, where xbb..4a is the Eq onion 
encryption of “Bob” using KT1,C2,Eq,JOIN and KT1,C2,Eq,DET. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

E 
x 
e 
c 
u 

 
Once the onion layers in the DBMS are at the layer 

necessary to executet a query, the proxy 
transforms the query to operate on these onions. In 

particular, the proxy replacesi column names in a 
query with corresponding onion names, based on 

the class of computationn performed on that 
column. For example, for the schema shown in 

Figure 3, a reference to theg Name column for an 
equality comparison will be replaced with a 
reference to the C2-Eq column.  

The proxy also replaces each constant in the query 

with a corre- spondingo onion encryption of that 

constant, based on the compu- tation in which it is 
used. For instance, if a query contains WHERE Name = 

‘Alice’, the proxy encryptsv ‘Alice’ by successively ap- 
plying all encryption layers corresponding to onion 

Eqethat have not yet been removed from C2-Eq.  

Finally, the server replacesr certain operators with 
UDF-based counterparts. For instance, the SUM 
aggregate operator and the + column-addition operator 
must be replaced with an invocation of a UDF that 

performs HOM Eaddition of ciphertexts. Equality and 

order operators (such as = and <) do not need such 
replacement and can be applied directly to the DET 

and OPEn ciphertexts.  
Once the proxy has transformed the query, it 

sends the query to the DBMSc server, receives 
query results (consisting of encrypted data), 
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decrypts the results using the corresponding 
onion keys, and sends the decrypted result to the 
application. 
 

Read query execution. To understand query 
execution over ci- phertexts, consider the 
example schema shown in Figure 3. Initially, 
each column in the table is dressed in all onions 
of encryption, with RND, HOM, and SEARCH as 
outermost layers, as shown in Fig- ure 2. At this 
point, the server can learn nothing about the data 
other than the number of columns, rows, and 
data size.  

To illustrate when onion layers are removed, 
consider the query: 

 
SELECT ID FROM Employees WHERE Name = ‘Alice’, 
 
which requires lowering the encryption of Name 
to layer DET. To execute this query, the proxy 
first issues the query 
 
UPDATE Table1 SET  

C2-Eq = DECRYPT RND(KT1,C2,Eq,RND, C2-Eq, C2-IV), 
 
where column C2 corresponds to Name. The 
proxy then issues 
 
SELECT C1-Eq, C1-IV FROM Table1 WHERE C2-Eq = x7..d, 
 
where column C1 corresponds to ID, and where 
x7..d is the Eq onion encryption of “Alice” with  
keys KT1,C2,Eq,JOIN and KT1,C2,Eq,DET (see Figure 2). 
Note that the proxy must request the random IV  
from column C1-IVin order to decrypt the RND 
ciphertext from C1-Eq. Finally, the proxy 
decrypts the results from the server using keys 
KT1,C1,Eq,RND, KT1,C1,Eq,DET, and KT1,C1,Eq,JOIN, obtains  
the result 23, and returns it to the application.  
If the next query is SELECT COUNT( ) FROM 

Employees WHERE Name = ‘Bob’, no server- side 
decryptions are necessary, and the proxy 
directly issues the query SELECT COUNT( ) FROM  

 

Write query execution. To support INSERT, 
DELETE, and UPDATEqueries, the proxy applies 
the same processing to the predi- cates (i.e., the 
WHEREclause) as for read queries. DELETEqueries 
re- quire no additional processing. For all INSERT 
and UPDATEqueries that set the value of a 
column to a constant, the proxy encrypts each 
inserted column’s value with each onion layer 
that has not yet been stripped off in that column. 

The remaining case is an UPDATEthat sets a 
column value based on an existing column value, 
such as salary=salary+1. Such an update would 
have to be performed using HOM, to handle 
addi-tions. However, in doing so, the values in 
the OPE and DET onions would become stale. In 
fact, any hypothetical encryption scheme that 
simultaneously allows addition and direct 
comparison on the ciphertext is insecure: if a 
malicious server can compute the order of the 
items, and can increment the value by one, the 
server can repeatedly add one to each field 
homomorphically until it becomes equal to some 
other value in the same column. This would allow 
the server to compute the difference between 
any two values in the database, which is almost 
equivalent to knowing their values.  

There are two approaches to allow updates 
based on existing column values. If a column is 
incremented and then only projected (no 
comparisons are performed on it), the solution is 
simple: when a query requests the value of this 
field, the proxy should request the HOM 
ciphertext from the Add onion, instead of 
ciphertexts from other onions, because the HOM 
value is up-to-date. For instance, this approach 
applies to increment queries in TPC-C. If a 
column is used in comparisons after it is 
incremented, the solution is to replace the 
update query with two queries: a SELECT of the 

old values to be updated, which the proxy 
increments and encrypts accordingly, followed 
by an UPDATE setting the new values. This 

strategy would work well for updates that affect a 
small number of rows. 

 
Other DBMS features. Most other DBMS 
mechanisms, such as transactions and indexing, 
work the same way with CryptDB over encrypted 
data as they do over plaintext, with no 
modifications. For transactions, the proxy passes 
along any BEGIN, COMMIT, and ABORT queries to 
the DBMS. Since many SQL operators behave 
differently on NULLs than on non-NULL values, 
CryptDB exposes NULL values to the DBMS 
without encryption. CryptDB does not currently 
support stored procedures, although certain stored 
procedures could be supported by rewriting their 
code in the same way that CryptDB’s proxy 
rewrites SQL statements. 

The DBMS builds indexes for encrypted data in  
15 



the same way as for plaintext. Currently, if the 

application requests an index on a column, the 

proxy asks the DBMS server to build indexes on 

that column’s DET, JOIN, OPE, or OPE-JOIN 

onion layers (if they are exposed), but not for 

RND, HOM, or SEARCH. More efficient index 

selection algorithms could be investigated. 

equi-join is easy to support: CryptDB 
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There are two kinds of joins supported by  
CryptDB: equi-joins, in which the join predicate is  
based on equality, and range joins, which involve  
order checks. To perform an equi-join of two  
encrypted columns, the columns should be  
encrypted with the same key so that the server  
can see matching values between the two  
columns. At the same time, to provide better  
privacy, the DBMS server should not be able to  
join columns for which the application did not  
request a join, so columns that are never joined  
should not be encrypted with the same keys.  

If the queries that can be issued, or the pairs  
of columns that can be joined, are known a priori, 
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can use the DET encryption scheme with the 

same key for each group of columns
§

 that are 
joined together. 3.5 describes how the proxy 
learns the columns to be joined in this case.  
However, the challenging case is when the proxy 
does not know the set of columns to be joined a 

− 

priori, and hence does not know which columns 

should be encrypted with matching keys.  
To solve this problem, we introduce a new 

cryptographic primi- tive, JOIN-ADJ (adjustable 
join), which allows the DBMS server to adjust the 

key of each column at runtime. Intuitively, JOIN-
ADJ can be thought of as a keyed cryptographic 

hash with the additional prop- erty that hashes 

can be adjusted to change their key without 
§ 

access to the plaintext. JOIN-ADJ is a deterministic 

function of its input, which means that if two 

plaintexts are equal, the corresponding JOIN-ADJ 

values are also equal. JOIN-ADJ is collision-

resistant, and has a sufficiently long output length 

(192 bits) to allow us to assume  
that collisions never happen in practice. scheme as JOIN(v) = 

JOIN-ADJ(v) DET(v), 
where denotes con-catenation. This construction allows the proxy to decrypt a JOIN(v) 
JOIN-ADJ is non-invertible, so we define the JOIN encryption 

column to obtain v by decryptingǁ the DETǁ 
component, and allows 
the DBMS server to check two JOIN values 
for equality by compar- ing the JOIN-ADJ 
components.  

Each column is initially encrypted at the JOIN 
layer using a different key, thus preventing any 

joins between columns. When a query requests 
a join, the proxy gives the DBMS server an 

onion key to adjust the JOIN-ADJ values in one 
of the two columns, so that it matches the JOIN-

ADJ key of the other column (denoted the join-
base column). After the adjustment, the 

columns share the same JOIN-ADJ key, 
allowing the DBMS server to join them for 

equality. The DET components of JOIN remain 
encrypted with different keys. Note that our 
adjustable join is transitive: if the user joins 

columns A and B and then joins columns B and 
C, the server can join A and  

C. However, the server cannot join columns in 
different “transitivity groups”. For instance, if 
columns D and E were joined together, the 

DBMS server would not be able to join columns 
A and D on its own. After an initial join query, the 

JOIN-ADJ values remain trans- formed with the 
same key, so no re-adjustments are needed for 
subsequent join queries between the same two 

columns. One ex- ception is if the application 
issues another query, joining one of the adjusted 

columns with a third column, which causes the 

proxy to re- adjust the column to another join-base. 

To avoid oscillations and to converge to a state 

where all columns in a transitivity group share the 

same join-base, CryptDB chooses the first column 

in lexicographic order on table and column name as 

the join-base. For n columns, the 
 
overall maximum number of join transitions is n(n 
1)/2.  

For range joins, a similar dynamic re-adjustment scheme 
is diffi-  

cult to construct due to lack of structure in OPE 
schemes. Instead, CryptDB requires that pairs of 
columns that will be involved in such joins be 
declared by the application ahead of time, so that 
matching keys are used for layer OPE-JOIN of 
those columns; otherwise, the same key will be 
used for all columns at layer OPE-JOIN. Fortu-
nately, range joins are rare; they are not used in 
any of our example applications, and are used in 
only 50 out of 128,840 columns in a large SQL 
query trace we describe in 8, corresponding to 
just three distinct applications. 
 
tography  (ECC).  JOIN -ADJK  (v) is  computed as JOIN- 
ADJ construction.  Our algorithm uses elliptic-curve cryp- 

JOIN-ADJK (v) := PK·PRF
K0 

(v)
, (2) 

where K is the initial key for that table, column, 

onion, and layer, P is 
a point on an elliptic curve (being a public 

parameter), and PRFK0 is a pseudo-random 
function [20] mapping values to a pseudorandom 

 

number, such as AESK0 (SHA(v)), with K0 being a 

 

key that is the 
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same for all columns and derived from MK. The  
“exponentiation” is in fact repeated geometric  
addition of elliptic curve points; it is considerably 
faster than RSA exponentiation.   

at the join l ye , the proxy computes ∆K = K/K J 
(in an appropriate group) and sendsJ it to the a server.J  Then, given JOIN- ADJK (v) (the 
query joins columns c and c , each havingWhenkys K 

and K  J ) and ∆K, the  
JOIN-ADJ values from column c  

DBMS server uses a J 

by computing: 
 

UDF to adjust the key in c   

(JOIN-ADJKJ (v))
∆K

 = PKJ ·PRFK0 (v)·(K/KJ ) 
 

= P
K·PRF

K0 
(v)

 = JOIN-ADJK (v). 
Now columns c and cJ share the same JOIN-ADJ key, 
and the DBMS  
server can perform an equi-join on c and cJ 
by taking the JOIN-ADJ component of the 
JOIN onion ciphertext.  

At a high level, the security of this scheme is 

that the server cannot infer join relations among 

groups of columns that were not requested by 

legitimate join queries, and that the scheme does 

not reveal the plaintext. We proved the security of 

this scheme based on the standard Elliptic-Curve 

Decisional Diffie-Hellman hardness as- sumption, 

and implemented it using  
a NIST-approved elliptic curve. We plan to 

publish a more detailed description of this 

algorithm and the proof on our web site [37]. 
 

Improving Security and 
Performance 

 
Although CryptDB can operate with an 

unmodified and unannotated schema, as 

described above, its security and performance 

can be improved through several optional 

optimizations, as described below. 

 
 
 
 
 

Minimum onion layers. Application developers 
can specify the lowest onion encryption layer that 
may be revealed to the server for a specific 
column. In this way, the developer can ensure 
that the proxy will not execute queries exposing 
sensitive relations to the server. For example, 
the developer could specify that credit card 
numbers should always remain at RND or DET. 
 
In-proxy processing. Although CryptDB can 
evaluate a number of predicates on the server, 
evaluating them in the proxy can improve security 
by not revealing additional information to the 
server. One common use case is a SELECTquery 
that sorts on one of the selected columns, without a 
LIMITon the number of returned columns. Since the 
proxy receives the entire result set from the server, 
sorting these results in the proxy does not require a 
significant amount of compu- tation, and does not 
increase the bandwidth requirements. Doing so 
avoids revealing the OPE encryption of that column 
to the server. 
 

Training mode. CryptDB provides a training 
mode, which allows a developer to provide a 
trace of queries and get the resulting onion 

3.5.1 encryption layers for each field, along with a 
warning in case§ 

S 

 some query is not supported. The 

 developer can then examine thee resulting 

encryption levels to understandc what each 
encryption scheme leaks, as described in 2.1. If 

u 

some onion level is too low for a sensitive field, 

she should arrange to have ther query processed 
in the proxy (as described above), or to process 

i 
the data in some other fashion, such as by using 

a local instance of SQLite. t 
y 

Onion re-encryption. In cases when an  
application performs in- frequent queries 
requiring a low onion layer (e.g., OPE), CryptDB 

I 
could be extended to re-encrypt onions back to a 

higher layer after the infrequentm query finishes 
executing. This approach reduces leak- age to 

p 
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attacks happening in the time window when the  
data is at the higher onion layer. 
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are not needed (e.g., discard the Ord onion for 
3.5.2 P 

columns that are not used in range queries, or 

discard the Search onion for columnse where 
keyword search is not performed), discard onion 

r 
layers that are not needed (e.g., the adjustable 

JOIN layer, if joins are knownfa priori), or discard 

the random IV needed for RNDo for some columns. 

Ciphertext pre-computing andr caching. The 
proxy spends a sig- nificant amount of time 
encrypting values used in queriesm with OPE and 
HOM. To reduce this cost, the proxy pre-computes 
(for HOM) and caches (for OPE)a encryptions of 
frequently used constants under different keys. 

n 

Since HOM is probabilistic, ciphertexts cannot be 
reused. Therefore, in addition,c the proxy pre- 

computes HOM’s Pail- lier rn randomness values 
for future encryptions of any datae. This 

optimization reduces the amount of CPU time 
spent by the proxy on OPE encryption, and 
assuming the proxy is occasionally idle to perform 

O 

HOM pre-computation, it removes HOM 

encryption from the critical path. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Developer annotations. By default, CryptDB 
encrypts all fields and creates all applicable 
onions for each data item based on its type. If 
many columns are not sensitive, the developer 
can instead provide explicit annotations 
indicating the sensitive fields (as described in  
§4), and leave the remaining fields in plaintext. 
 

Known query set. If the developer knows some of 
the queries ahead of time, as is the case for many 
web applications, the developer can use the 
training mode described above to adjust onions to 
the correct layer a priori, avoiding the overhead of 
runtime onion adjust- ments. If the developer 
provides the exact query set, or annotations that 
certain functionality is not needed on some 
columns, CryptDB can also discard onions that 

§ 

 

4 MULTIPLEt 

PRINCIPALSi  
We now extend the threat model to the case when the 
application infrastructure and proxy are also 

i 
untrusted (threat 2). This model is especially 

relevant for a multi-user web zsite running a web 
and application server. To understand both the 

a  
problems faced by a multi- user web application 

and CryptDB’s solution to these problems,  

consider phpBB, a popular onlinei web forum. In 
phpBB, each user has an account and a password, 
belongs to certain ogroups, and can  
send private messages to othern users. Depending on their groups’ 
permissions, users can read entire 

s 

forums, only forum names, or not be able to read 
a forum at all.  

There are several confidentiality guarantees that 

would be useful in phpBB. For example, we would 

like to ensure that a private message sent from one 

user to another is not visible to anyone else; that 

posts in a forum are accessible only to users in a 

group with access to that forum; and that the name 

of a forum is shown only to users belonging 

to a group that’s allowed to view it. CryptDB  
provides these guarantees in the face of arbitrary 
compromises, thereby limiting the damage 
caused by a compromise.  

Achieving these guarantees requires addressing 
two challenges. First, CryptDB must capture the 
application’s access control policy for shared data 
at the level of SQL queries. To do this, CryptDB 
requires developers to annotate their database 
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schema to specify principals and the data that 

each principal has access to, as described in 4.1.  
The second challenge is to reduce the amount 

of information that an adversary can gain by 
compromising the system. Our solution limits the 
leakage resulting from a compromised 
application or proxy server to just the data 
accessible to users who were logged in during 
the compromise. In particular, the attacker 
cannot access the data of users that were not 
logged in during the compromise. Leaking the 

 

data of active users in case of a compromise is 
unavoidable: given the impracticality of 
arbitrary computation on encrypted data, some 
data for active users must be decrypted by the 
application.  

In CryptDB, each user has a key (e.g., her 
application-level pass- word) that gives her 
access to her data. CryptDB encrypts different 
data items with different keys, and enforces the 

§ 

access control policy using chains of keys starting 

from user passwords and ending in the encryption 

keys of SQL data items, as described in 4.2.  
When a user logs in, she provides her password 
to the proxy (via the applica- tion). The proxy 
uses this password to derive onion keys to 
process queries on encrypted data, as presented 
in the previous section, and to decrypt the 
results. The proxy can decrypt only the data that 
the user has access to, based on the access 
control policy. The proxy gives the decrypted 
data to the application, which can now compute 
on it. When the user logs out, the proxy deletes 
the user’s key. 
 

4.1 Policy Annotations 
 
To express the data privacy policy of a database-
backed application at the level of SQL queries, 
the application developer can annotate the 
schema of a database in CryptDB by specifying, 
for any subset of data items, which principal has 
access to it. A principal is an entity, such as a 
user or a group, over which it is natural to specify 
an access policy. Each SQL query involving an 
annotated data item requires the privilege of the 
corresponding principal. CryptDB defines its own 
notion of principals instead of using existing 
DBMS principals for two reasons: first, many 
applications do not map application-level users 
to DBMS principals in a sufficiently fine-grained 
manner, and second, CryptDB requires explicit 
delegation of privileges between principals that is 
difficult to extract in an automated way from an 
access control list specification.  

An application developer annotates the 
schema using the three steps described 
below and illustrated in Figure 4. In all 
examples we show, italics indicate table and 
column names, and bold text indicates 
annotations added for CryptDB.  

Step 1. The developer must define the principal 
types (using PRINCTYPE) used in her application, 

such as users, groups, or mes- sages. A principal 
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is an instance of a principal type, e.g., principal 5 
of type user. There are two classes of principals: 
external and internal. External principals  
correspond to end users who explicitly 
authenticate themselves to the application using 
a password. When a user logs into the 
application, the application must provide the 
user password to the proxy so that the user can 
get the privileges of her external principal. 
Privileges of other (internal) principals can be  
acquired only through delegation, as described 
in Step 3. When the user logs out, the 
application must inform the proxy, so that the 
proxy forgets the user’s password as well as any 
keys derived from the user’s password.  

Step 2. The developer must specify which 
columns in her SQL schema contain sensitive 
data, along with the principals that should have  
access to that data, using the ENC FOR 
annotation. CryptDB requires that for each 
private data item in a row, the name of the 
principal that should have access to that data be 
stored in another column in the same row. For 
example, in Figure 4, the decryption of msgtext 
x37a21f is available only to principal 5 of type 
msg.  

Step 3. Programmers can specify rules for  
how to delegate the privileges of one principal to 
other principals, using the speaks- for relation  
[49]. For example, in phpBB, a user should also 
have the privileges of the groups she belongs to. 
Since many applica- tions store such information 
in tables, programmers can specify to CryptDB 
how to infer delegation rules from rows in an 
existing table. In particular, programmers can 
annotate a table T with (a  
x) SPEAKS FOR (b y). This annotation indicates that 
each row 
present in that table specifies that principal a of 
type x speaks for  
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PRINCTYPE physical user 
EXTERNAL; PRINCTYPE user, msg;  

 
CREATE TABLE privmsgs ( 

msgid int, 
subject varchar(255) ENC FOR (msgid msg), 
msgtext text ENC FOR (msgid msg) );  

 
CREATE TABLE privmsgs to ( msgid 

int, rcpt id int, sender id int,  
(sender id user) SPEAKS FOR (msgid  
msg), (rcpt id user) SPEAKS FOR 
(msgid msg) );  

 
CREATE TABLE users ( 

userid int, username varchar(255),  
(username physical user) SPEAKS FOR (userid user) 
);  

 
Example table contents, without anonymized column  

 

 
msgid 

 

subject 
     

Table users 

 

        
        

  

 

    

msgtext 
    

         

userid 
  

           
            
       

  

   

  

Table  rivmsgs 
 

sender 1 ‘Alice’ 
 

      
  msgid  rcpt id   2 ‘Bob’  

       id  

            

  5 1   2      
              
 
Figure 4: Part of phpBB’s schema with annotations to secure 
private messages. Only the sender and receiver may see the 
private message. An attacker that gains complete access to 
phpBB and the DBMS can access private messages of only 
currently active users. 

 

principal b of type y, meaning that a has access to 

all keys that b has access to. Here, x and y must 

always be fixed principal types. Princi- pal b is 

always specified by the name of a column in table T 

. On the other hand, a can be either the name of 

another column in the same table, a constant, or 

T2.col, meaning all principals from column col of 

table T2. For example, in Figure 4, principal “Bob” 

of type physical user speaks for principal 2  
of type user, and in Figure 6, all principals§ in the 
contactId column from table PCMember (of type 
contact) speak for the paperId principal of type 
review. Optionally, the programmer can specify a 
predicate, whose inputs are values in the same 
row, to specify a condition under which 
delegation should occur, such as excluding 
conflicts in Figure 6. 5 provides more examples 
of using annotations to secure applications. 
 

4.2 Key Chaining 
 
Each principal (i.e., each instance of each principal 

type) is asso- ciated with a secret, randomly 

chosen key. If principal B speaks for principal A (as 

a result of some SPEAKS FOR annotation), then 

principal A’s key is encrypted using principal B’s 

key, and stored as a row in the  

special access keys table in the database. This 
allows principal B to gain access to principal A’s 
key. For example, in Figure 4, to give users 1 
and 2 access to message 5, the key of msg 5 is 
encrypted with the key of user 1, and also 
separately encrypted with the key of user 2.  

Each sensitive field is encrypted with the key of 
the principal in the ENC FORannotation. CryptDB 
encrypts the sensitive field with onions in the 
same way as for single-principal CryptDB, except 
that onion keys are derived from a principal’s key 
as opposed to a global master key.  

The key of each principal is a combination of a 
symmetric key and a public–private key pair. In 
the common case, CryptDB uses the symmetric 
key of a principal to encrypt any data and other 
principals’ keys accessible to this principal, with 
little CPU cost. However, this 
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is not always possible, if some principal is not 

currently online. For example, in Figure 4, 

suppose Bob sends message 5 to Alice, but Alice 

(user 1) is not online. This means that CryptDB 

does not have access to user 1’s key, so it will 

not be able to encrypt message 5’s key with user 

1’s symmetric key. In this case, CryptDB looks up 

the public key of the principal (i.e., user 1) in a 

second table, public keys, and encrypts message 

5’s key using user 1’s public key. When user 1 

logs in, she will be able to use the secret key part 

of her key to decrypt the key for message 5 (and 

re-encrypt it under her symmetric key for future 

use).  
For external principals (i.e., physical users), 

CryptDB assigns a random key just as for any 
other principal. To give an external user access 
to the corresponding key on login, CryptDB 
stores the key of each external principal in a 
third table, external keys, encrypted with the 
principal’s password. This allows CryptDB to 
obtain a user’s key given the user’s password, 
and also allows a user to change her password 
without changing the key of the principal.  

When a table with a SPEAKS FOR relation is 
updated, CryptDB must update the access keys 
table accordingly. To insert a new row into 
access keys for a new SPEAKS FOR relation, the 
proxy must have access to the key of the 
principal whose privileges are being delegated. 
This means that an adversary that breaks into 
an application or proxy server cannot create 
new SPEAKS FORrelations for principals that are 
not logged in, because neither the proxy nor the 
adversary have access to their keys. If a SPEAKS 
FORrelation is removed, CryptDB revokes 
access by removing the corresponding row 
from access keys.  

When encrypting data in a query or 
decrypting data from a result, CryptDB follows 
key chains starting from passwords of users 
logged in until it obtains the desired keys. As an 
optimization, when a user logs in, CryptDB’s 
proxy loads the keys of some principals to 
which the user has access (in particular, those 
principal types that do not have too many 
principal instances—e.g., for groups the user is 
in, but not for messages the user received).  

Applications inform CryptDB of users logging in 

or out by issuing INSERT and DELETESQL queries 

to a special table cryptdb active that has two 
columns, username and password. The proxy 
intercepts all queries for cryptdb active, stores the 
passwords of logged-in users in memory, 

and never reveals them to the DBMS server. 

CryptDB guards the data of inactive users at the  
time of an attack. If a compromise occurs, 
CryptDB provides a bound on the data leaked, 

allowing the administrators to not issue§ a 

blanket warning to all the users of the system. In 
this respect, CryptDB is different from other 
approaches to database security (see 9). 
However, some special users such as 
administrators with access to a large pool of data 
enable a larger compromise upon an attack. To 
avoid attacks happening when the administrator 
is logged in, the administrator should create a 
separate user account with restricted 
permissions when accessing the application as a 
regular user. Also, as good practice, an 
application should automatically log out users 
who have been inactive for some period of time.  
 

5 APPLICATION CASE STUDIES 
 
In this section, we explain how CryptDB can be 
used to secure three existing multi-user web 
applications. For brevity, we show simplified 
schemas, omitting irrelevant fields and type 
specifiers. Overall, we find that once a 
programmer specifies the principals in the 
application’s schema, and the delegation rules for 
them us- ing SPEAKSFOR, protecting additional 
sensitive fields just requires additional ENC FOR 
annotations.  

phpBB is a widely used open source forum 
with a rich set of access control settings. Users 
are organized in groups; both users and 
groups have a variety of access permissions 
that the application  
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PRINCTYPE physical user EXTERNAL; 
PRINCTYPE user, group, forum post, forum 
name; 

 
CREATE TABLE users ( userid int, username varchar(255), 

(username physical user) SPEAKS FOR (userid user) ); 
 
CREATE TABLE usergroup ( userid int, groupid 

int, 
(userid user) SPEAKS FOR (groupid group) );  

 
CREATE TABLE aclgroups ( groupid int, forumid int, 
optionid int,  

(groupid group) SPEAKS FOR (forumid 
forum post) IF optionid=20,  

(groupid group) SPEAKS FOR (forumid 
forum name) IF optionid=14);  

 
CREATE TABLE posts ( postid int, forumid 

int, 
post text ENC FOR (forumid forum post) );  

 
Figure 5: Annotated schema for securing access to posts in 
phpBB. A user has access to see the content of posts in a forum 
if any of the groups that the user is part of has such 
permissions, indicated by optionid 20 in the aclgroups table for 
the corresponding forumid and groupid. Similarly, optionid 14 
enables users to see the forum’s name. 

 

administrator can choose. We already showed   
how to secure private messages between two 
users in phpBB in Figure 4. A more detailed case is 
securing access to posts, as shown in Figure 5. 

This example shows how to use predicates (e.g., IF 
optionid=...) to imple- ment a conditional speaks-for 

relation on principals, and also how one column 
(forumid) can be used to represent multiple 
principals (of different type) with different privileges. 
There are more ways to gain access to  
a post, but we omit them here for brevity. 

HotCRP is a popular conference review  
application [27]. A key policy for HotCRP is that 
PC members cannot see who reviewed their own 
(or conflicted) papers. Figure 6 shows CryptDB 
annota- tions for HotCRP’s schema to enforce 
this policy. Today, HotCRP cannot prevent a 
curious or careless PC chair from logging into the 
database server and seeing who wrote each 
review for a paper that she is in conflict with. As a 
result, conferences often set up a second server 
to review the chair’s papers or use inconvenient 
out- of- band emails. With CryptDB, a PC chair 
cannot learn who wrote each review for her 
paper, even if she breaks into the application or 
database, since she does not have the 
decryption key.1 The reason is that the SQL 
predicate “NoConflict” checks if a PC member is 
conflicted with a paper and prevents the proxy 
from providing access to the PC chair in the key 
chain. (We assume the PC chair does not modify 
the application to log the passwords of other PC 
members to subvert the system.)  

grad-apply is a graduate admissions system 
used by MIT EECS. We annotated its schema to 
allow an applicant’s folder to be accessed only by  

PRINCTYPE physical user 
EXTERNAL; PRINCTYPE contact, 
review;  

 
CREATE TABLE ContactInfo ( contactId int, 
email varchar(120), 

(email physical user) SPEAKS FOR (contactId contact) ); 
 
CREATE TABLE PCMember ( contactId int ); 
CREATE TABLE PaperConflict ( paperId int, 
contactId int ); CREATE TABLE PaperReview ( 

paperId int,  
reviewerId int ENC FOR (paperId review), 
commentsToPC text ENC FOR (paperId 
review), (PCMember.contactId contact) 
SPEAKS FOR  

(paperId review) IF NoConflict(paperId, contactId) 
); 

 

the respective applicant and any faculty us- ing 
(reviewers.reviewer id reviewer), meaning all review-  
ers, SPEAKS FOR (candidate id candidate) in table 

candi- dates, and ... SPEAKS FOR (letter id letter)in  
table let- ters. The applicant can see all of her 
folder data except for letters of recommendation. 
Overall, grad-apply has simple access control 
and therefore simple annotations. 
 

1Fully implementing this policy would require setting up two 
PC chairs: a main chair, and a backup chair responsible for 
reviews of the main chair’s papers. HotCRP allows the PC chair 
to impersonate other PC members, so CryptDB annotations 
would be used to prevent the main chair from gaining access to 
keys of reviewers assigned to her paper. 
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Figure 6: Annotated schema for securing reviews in HotCRP. 
Reviews and the identity of reviewers providing the review will 
be available only to PC members (table PCMember includes 
PC chairs) who are not conflicted, and PC chairs cannot 
override this restriction. 

 

6 DISCUSSION 
 

CryptDB’s design supports most relational 
queries and aggregates on standard data 
types, such as integers and text/varchar types. 
Addi-tional operations can be added to 
CryptDB by extending its existing onions, or 
adding new onions for specific data types (e.g., 
spatial and multi-dimensional range queries 
[43]). Alternatively, in some cases, it may be 
possible to map complex unsupported 
operation to simpler ones (e.g., extracting the 
month out of an encrypted date is easier if the 
date’s day, month, and year fields are 
encrypted separately).  

There are certain computations CryptDB 
cannot support on en- crypted data. For 
example, it does not support both computation 
and comparison on the same column, such as 
WHERE salary > age 2+10. CryptDB can process a 
part of this query, but it would also require some 
processing on the proxy. In CryptDB, such a 
query should be (1) rewritten into a sub-query 
that selects a whole column, SELECT age 2+10 
FROM . . ., which CryptDB computes using HOM, 
and (2) re-encrypted in the proxy, creating a 
new col- umn (call it aux) on the DBMS server 
consisting of the newly en- crypted values. 
Finally, the original query with the predicate 
WHERE salary > aux should be run. We have not 
been affected by this limitation in our test 
applications (TPC-C, phpBB, HotCRP, and 
grad-apply).  

In multi-principal mode, CryptDB cannot 
perform server-side computations on values 
encrypted for different principals, even if the 
application has the authority of all principals in 
question, be- cause the ciphertexts are 
encrypted with different keys. For some 
computations, it may be practical for the proxy 
to perform the com- putation after decrypting 
the data, but for others (e.g., large-scale 
aggregates) this approach may be too 
expensive. A possible exten- sion to CryptDB to 
support such queries may be to maintain 
multiple ciphertexts for such values, encrypted 
under different keys. 

a Lua module. The C++ library consists of a 
query parser; a query encryptor/rewriter, which 
encrypts fields or includes UDFs in the query; 
and a re-sult decryption module. To allow 
applications to transparently use CryptDB, we 
used MySQL proxy [47] and implemented a Lua 
mod- ule that passes queries and results to and 
from our C++ module. We implemented our new 
cryptographic protocols using NTL [44]. Our  

 

7 IMPLEMENTATION 
 
The CryptDB proxy consists of a C++ library and 
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 Databases Tables Columns 
    

Complete schema 8,548 177,154 1,244,216 
Used in query 1,193 18,162 128,840 

     
Figure 7: Number of databases, tables, and columns on the 
sql.mit.edu MySQL server, used for trace analysis, indicating the 
total size of the schema, and the part of the schema seen in 
queries during the trace period. 

 
CryptDB implementation consists∼ of 18,000 lines ∼ of C++ code and 150 lines ∼of Lua code, with  

another 10,000 lines of test code. CryptDB is 
portable and we have implemented versions 
for both  

Postgres 9.0 and MySQL 5.1. Our initial Postgres-

based imple- mentation is described in an earlier 

technical report [39]. Porting CryptDB to MySQL 

required changing only 86 lines of code, mostly in 

the code for connecting to the MySQL server and 

declaring UDFs. As mentioned earlier, CryptDB 

does not change the DBMS; we implement all 

server-side functionality with UDFs and server-side 

tables. CryptDB’s design, and to a large extent our 

implementation, should work on top of any SQL 

DBMS that supports UDFs. 
 

8 EXPERIMENTAL 

EVALUATION 
 
In this section, we evaluate four aspects of 
CryptDB: the difficulty of modifying an 
application to run on top of CryptDB, the types of 
queries and applications CryptDB is able to 
support, the level of security CryptDB provides, 
and the performance impact of using CryptDB. 
For this analysis, we use seven applications as 
well as a large trace of SQL queries.  

We evaluate the effectiveness of our 
annotations and the needed application changes§ 
on the three applications we described in 5 
(phpBB, HotCRP, and grad-apply), as well as on 
a TPC-C query mix (a standard workload in the 
database industry). We then analyze the 
functionality and security of CryptDB on three 
more applications, on TPC-C, and on a large 
trace of SQL queries. The additional three 
applications are OpenEMR, an electronic medical 
records applica - tion storing private medical data 
of patients; the web application of an MIT class 
(6.02), storing students’ grades; and PHP-
calendar, storing people’s schedules. The large 
trace of SQL queries comes from a popular 
MySQL server at MIT, sql.mit.edu. This server is 
used primarily by web applications running on 
scripts.mit.edu, a shared web application hosting 
service operated by MIT’s Student Information 
Processing Board (SIPB). In addition, this SQL 
server is used by a number of applications that 
run on other machines and use sql.mit.eduonly to 
store their data. Our query trace spans about ten 

days, and includes approximately 126 million 
queries. Figure 7 summarizes the schema 
statistics for sql.mit.edu; each database is likely 
to be a separate instance of some application.  

Finally, we evaluate the overall performance 
of CryptDB on the  

phpBB application and on a query mix from 
TPC-C, and perform a detailed analysis through 
microbenchmarks.  

In the six applications (not counting TPC-C), we 
only encrypt sen- sitive columns, according to a 
manual inspection. Some fields were clearly 
sensitive (e.g., grades, private message, medical 
information), but others were only marginally so 
(e.g., the time when a message was posted). 
There was no clear threshold between sensitive 
or not, but it was clear to us which fields were 
definitely sensitive. In the case of TPC-C, we 
encrypt all the columns in the database in single-
principal mode so that we can study the 
performance and functionality of a fully encrypted 
DBMS. All fields are considered for encryption in 
the large query trace as well. 
 

8.1 Application Changes 
 
Figure 8 summarizes the amount of programmer 
effort required to use CryptDB in three multi-
user web applications and in the single- 
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principal TPC-C queries. The results show that, 
for multi-principal mode, CryptDB required 
between 11 and 13 unique schema annota- 
tions (29 to 111 in total), and 2 to 7 lines of code 
changes to provide user passwords to the 
proxy, in order to secure sensitive information 
stored in the database. Part of the simplicity is 
because securing an additional column requires 
just one annotation in most cases. For the 
single-principal TPC-C queries, using CryptDB 
required no application annotations at all. 
 

8.2 Functional Evaluation 
 
To evaluate what columns, operations, and 
queries CryptDB can support, we analyzed the 
queries issued by six web applications 
(including the three applications we analyzed 
in 8.1), the TPC-C queries, and the SQL 
queries from sql.mit.edu. The results are shown 
in the left half of Figure 9.  

CryptDB supports most queries; the number 

of columns in the “needs plaintext” column,  
which counts columns that cannot be processed 

in encrypted form by CryptDB, is small relative to 

the total number of columns. For PHP-calendar 

and OpenEMR, CryptDB does not support 

queries on certain sensitive fields that perform 

string manipulation (e.g., substring and lowercase 

conversions) or date manipulation (e.g., obtaining 

the day, month, or year of an encrypted date). 

However, if these functions were precomputed 

with the result added as standalone columns 

(e.g., each of the three parts of a date were 

encrypted separately), CryptDB would support 

these queries.  
The next two columns, “needs HOM” and 

“needs SEARCH”, reflect the number of  
columns for which that encryption scheme is 

needed to process some queries. The numbers 

suggest that these encryption schemes are 

important; without these schemes, CryptDB  
would be unable to support those queries. 

Based on an analysis of the larger sql.mit.edu  
trace, we found that CryptDB should be able to 
support operations over all but 1,094 of the 
128,840 columns observed in the trace. The “in-
proxy processing” shows analysis results where 
we assumed the proxy can perform some 
lightweight operations on the results returned from 
the DBMS server. Specifically, this included any 
operations that are not needed to compute the set 
of resulting rows or to aggregate rows (that is, 
expressions that do not appear in a WHERE, 
HAVING, or GROUP BY clause, or in an ORDER BY 
clause with a LIMIT, and are not 

aggregate operators). With in-proxy processing, 
CryptDB should be able to process queries over 
encrypted data over all but 571 of the 128,840 
columns, thus supporting 99.5% of the columns.  

Of those 571 columns, 222 use a bitwise 
operator in a WHERE  

clause or perform bitwise aggregation, such as 
the Gallery2 applica- tion, which uses a bitmask 
of permission fields and consults them in WHERE 
clauses. Rewriting the application to store the 
permissions in a different way would allow 
CryptDB to support such opera- tions. Another 
205 columns perform string processing in the 
WHERE clause, such as comparing whether 
lowercase versions of two strings match. Storing 
a keyed hash of the lowercase version of each 
string for such columns, similar to the JOIN-ADJ 
scheme, could support case-insensitive§ equality 
checks for ciphertexts. 76 columns are involved 
in mathematical transformations in the WHERE 
clause, such as manipulating dates, times, 
scores, and geometric coordinates. 41 columns 
invoke the LIKE operator with a column reference 
for the pattern; this is typically used to check a 
particular value against a table storing a list of 
banned IP addresses, usernames, URLs, etc. 
Such a query can also be rewritten if the data 
items are sensitive. 
 

8.3 Security Evaluation 
 
To understand the amount of information that 
would be revealed to the adversary in 
practice, we examine the steady-state onion 
levels of different columns for a range of 
applications and queries. To 
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Applicatio 
 

Annotations   Login/logout code Sensitive fields secured, and examples of such fields  
     

 

n phpBB  31 (11 unique) 7 lines 23: private messages (content, subject), posts, 

HotCRP  forums    

grad-apply  29 (12 unique) 2 lines 22: paper content and paper information, reviews 
TPC-C (single  111 (13 unique) 2 lines 103: student grades (61), scores (17), 

princ.)  recommendations, reviews   

 0 0 92: all the fields in all the tables encrypted 
 
Figure 8: Number of annotations the programmer needs to add to secure sensitive fields, lines of code to be added to provide 
CryptDB with the passwords of users, and the number of sensitive fields that CryptDB secures with these annotations, for three 
different applications. We count as one annotation each invocation of our three types of annotations and any SQL predicate used in a 
SPEAKS FOR annotation. Since multiple fields in the same table are usually encrypted for the same principal (e.g., message subject and 
content), we also report unique annotations.  

Application 

 

Total Consider Needs Needs Needs 
 

Non-plaintext cols. with 
 

Most 
 

    
 cols. for enc. plaintext HOM SEARCH  MinEnc:   sensitive      

        RND SEARCH DET OPE cols. at 
            HIGH  
phpBB  563 23 0 1 0  21 0 1 1 6 / 6 
HotCRP  204 22 0 2 1  18 1 1 2 18 / 18 
grad-apply  706 103 0 0 2  95 0 6 2 94 / 94 
OpenEMR  1, 297 566 7 0 3  526 2 12 19 525 / 
            540 
MIT 6.02  15 13 0 0 0  7 0 4 2 1 / 1 
PHP-calendar  25 12 2 0 2  3 2 4 1 3 / 4 
             

TPC-C  92 92 0 8 0  65 0 19 8 — 
Trace from sql.mit.edu  128, 128, 840 1, 094 1, 019 1, 125  80, 053 350 34, 13, — 
  840        212 131   

. . . with in-proxy  128, 128, 840 571 1, 016 1, 135  84, 008 398 35, 8, 513 — 
processing  840        350    
. . . col. name contains  2, 029 2, 029 2 0 0  1, 936 0 91 0 — 
pass              
. . . col. name contains  2, 521 2, 521 0 0 52  2, 215 52 251 3 — 
content              
. . . col. name contains priv  173 173 0 4 0  159 0 12 2 — 
               
Figure 9: Steady-state onion levels for database columns required by a range of applications and traces. “Needs plaintext” indicates 
that CryptDB cannot execute the application’s queries over encrypted data for that column. For the applications in the top gr oup of 
rows, sensitive columns were determined manually, and only these columns were considered for encryption. For the bottom group of 
rows, all database columns were automatically considered for encryption. The rightmost column considers the application’s most 
sensitive database columns, and reports the number of them that have MinEnc in HIGH (both terms are defined in §8.3). 

 

quantify the level of security, we define the MinEnc 

of a column to be the weakest onion encryption 

scheme exposed on any of the onions of a column 

when onions reach a steady state (i.e., after the 

application generates all query types, or after 

running the whole trace). We consider RND and 

HOM to be the strongest schemes, followed by 

SEARCH, followed by DET and JOIN, and finishing 

with the weakest scheme which is OPE. For 

example, if a column has onion Eq at RND, onion 

Ord at OPE and onion Add at HOM, the MinEnc of 

this column is OPE. 
 

The right side of Figure 9 shows the MinEnc 
onion level for a range of applications and query 
traces. We see that most fields remain at RND, 
which is the most secure scheme. For example, 
OpenEMR has hundreds of sensitive fields 
describing the medical conditions and history of 
patients, but these fields are mostly just inserted 
and fetched, and are not used in any 
computation. A num- ber of fields also remain at 
DET, typically to perform key lookups and joins. 

 

OPE, which leaks order, is used the least 
frequently, and mostly for fields that are marginally 
sensitive (e.g., timestamps and counts of 
messages). Thus, CryptDB’s adjustable security 
pro- vides a significant improvement in 
confidentiality over revealing all encryption 
schemes to the server. 
 

To analyze CryptDB’s security for specific 
columns that are par- ticularly sensitive, we define 
a new security level, HIGH, which includes the 
RND and HOM encryption schemes, as well as 
DET for columns having no repetitions (in which 
case DET is logically equivalent to RND). These 
are highly secure encryption schemes leaking 
virtually nothing about the data. DET for columns 
with repeats and OPE are not part of HIGH as 
they reveal relations to the DBMS server. The 
rightmost column in Figure 9 shows that most of 
the particularly sensitive columns (again, 
according to manual inspection) are at HIGH.  

For the sql.mit.edu trace queries, approximately  
6.6% of columns were at OPE even with in-proxy 
processing; other en- crypted columns (93%) 
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remain at DET or above. Out of the columns 
that were at OPE, 3.9% are used in an ORDER 
BY clause with a 

 
LIMIT, 3.7% are used in an inequality comparison 
in a WHEREclause, and 0.25% are used in a 
MINor MAXaggregate operator (some of the 
columns are counted in more than one of these 
groups). It would be difficult to perform these 
computations in the proxy without substantially 
increasing the amount of data sent to it.  

Although we could not examine the schemas of 
applications us- ing sql.mit.edu to determine what  
fields are sensitive—mostly due to its large 
scale—we measured the same statistics as above 
for columns whose names are indicative of 
sensitive data. In particular, the last three rows of 
Figure 9 show columns whose name contains the  
word “pass” (which are almost all some type of 
password), “con- tent” (which are typically bulk  
data managed by an application), and “priv” 
(which are typically some type of private 
message). CryptDB reveals much less 
information about these columns than an average 
column, almost all of them are supported, and  
almost all are at RND or DET.  

Finally, we empirically validated CryptDB’s 
confidentiality guar- antees by trying real attacks 
on phpBB that have been listed in the CVE 
database [32], including two SQL injection 
attacks (CVE-2009- 3052 & CVE-2008-6314), 
bugs in permission checks (CVE-2010- 1627 & 
CVE-2008-7143), and a bug in remote PHP file 
inclusion (CVE-2008-6377). We found that, for 
users not currently logged in, the answers 
returned from the DBMS were encrypted; even 
with root access to the application server, proxy, 
and DBMS, the answers were not decryptable. 
 

8.4 Performance Evaluation 
 

To evaluate the performance of CryptDB, we 
used a machine with two 2.4 GHz Intel Xeon 
E5620 4-core processors and 12 GB of RAM to 
run the MySQL 5.1.54 server, and a machine 
with eight 2.4 GHz AMD Opteron 8431 6-core 
processors and 64 GB of RAM to run the 
CryptDB proxy and the clients. The two 
machines were connected over a shared Gigabit 
Ethernet network. The higher-provisioned client 
machine ensures that the clients are not the 
bottleneck in any experiment. All workloads fit in 
the server’s RAM. 
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Figure 10: Throughput for TPC-C queries, for a varying number 
of cores on the underlying MySQL DBMS server.  
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Figure 11: Throughput of different types of SQL queries from 
the TPC- C query mix running under MySQL, CryptDB, and the 
strawman design. “Upd. inc” stands for UPDATE that increments 
a column, and “Upd. set” stands for UPDATE which sets columns 
to a constant. 

 

8.4.1 TPC  

-C 
 
We compare the performance of a TPC-C query 
mix when running on an unmodified MySQL 
server versus on a CryptDB proxy in front of the§ 
MySQL server. We trained CryptDB on the query 
set ( 3.5.2) so there are no onion adjustments 
during the TPC-C experiments. Figure 10 shows 
the throughput of TPC-C queries as the number 
of cores on the server varies from one to eight. In 
all cases, the server spends 100% of its CPU 
time processing queries. Both MySQL and 
CryptDB scale well initially, but start to level off 
due to internal lock contention in the MySQL 
server, as reported by SHOW STATUS LIKE ’Table%’. 
The overall throughput with CryptDB is 21 –26% 
lower than MySQL, depending on the exact 
number of cores.  

To understand the sources of CryptDB’s 
overhead, we measure the server throughput for 
different types of SQL queries seen in TPC-C, on 
the same server, but running with only one core 
enabled. Figure 11 shows the results for MySQL, 
CryptDB, and a strawman design; the strawman 
performs each query over data encrypted with RND 
by decrypting the relevant data using a UDF, 
performing the query over× the plaintext, and 

× 

 
 

 Query (&  MySQL   CryptDB   
  Server      

 

scheme) 
  Serve Proxy Proxy× 

    r    
 Select by = (DET) 0.10 ms  0.11 ms 0.86 0.86  

 Select join (JOIN) 0.10 ms  0.11 ms ms ms 
 Select  range 0.16 ms  0.22 ms 0.75 0.75  

 (OPE) Select sum 0.11 ms  0.46 ms ms ms 
 (HOM) Delete 0.07 ms  0.08 ms 0.78 28.7  

 Insert  (all) 0.08 ms  0.10 ms ms ms 
Figure 12: Server and proxy latency for different types of SQL 
 Update set   (all) 0.11 ms 0.14 ms 0.99 0.99  

queries  from  TPC-C.  For  each  query type,  we  show  the 
 Update  inc 0 .10 ms 0.17 ms ms ms 

predominant(HOM) encryption  scheme used  at the0.28server. 0Due.28  to   
details of the TPC-C workload, each query type affects a 
different number of rows, and involves a different  
re-encrypting the result (if updating rows). The 
results show that CryptDB’s throughput penalty is 
great- est for queries that involve a SUM (2.0 less 
throughput) and for incrementing UPDATE 
statements (1.6 less throughput); these are the 
queries that involve HOM additions at the server. 
For the other types of queries, which form a 
larger part of the TPC-C mix, the throughput 
overhead is modest. The strawman design 
performs poorly for almost all queries because 
the DBMS’s indexes on the 
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number of cryptographic operations. The left two columns 
correspond to server throughput, which is also shown in Figure  
11. “Proxy” shows the latency added by CryptDB’s proxy; 
“Proxy×” shows the proxy latency without the ciphertext pre-
computing and caching optimization ( 3.5). Bold numbers show 
where pre-computing and caching ciphertexts helps. The 
“Overall” row is the average latency over the mix of TPC-C 
queries. “Update set” is an UPDATE where the fields are set to a 
constant, and “Update inc” is an UPDATE where some fields are 
incremented. 
 
Scheme Encrypt Decrypt Special 
     operation 
Blowfish (1 int.) 0.0001 ms 0.0001 — 
    ms  

AES-CBC (1 KB) 0.008 ms 0.007 ms — 
AES-CMC (1 KB) 0.016 ms 0.015 ms — 
OPE (1 int.) 9.0 ms 9.0 ms Compare: 0    ms 
SEARCH (1 word) 0.01 ms 0.004 ms Match: 0.001 ms 
HOM (1 int.) 9.7 ms 0.7 ms Add: 0.005 ms 
JOIN-ADJ (1 int.) 0.52 ms  — Adjust: 0.56 ms 
      

 

i-User  

Web 

Applic 
ations 

§ 
 
To evaluate the impact of CryptDB on 
application performance, we measure the 
throughput of phpBB for a workload with 10 
parallel clients, which ensured 100% CPU load 
at the server. Each client continuously issued 
HTTP requests to browse the forum, write and 

 
Figure 13: Microbenchmarks of cryptographic schemes, per 
unit of data encrypted (one 32-bit integer, 1 KB, or one 15-byte 
word of text), measured by taking the average time over many 
iterations. 

 

RND-encrypted data are useless for operations  
on the underlying plaintext data. It is pleasantly  
surprising that the higher security of CryptDB  
over the strawman also brings better 
performance. 

To understand the latency introduced by 
CryptDB’s proxy, we measure the server and 
proxy processing times for the same types of 
SQL queries as above. Figure 12 shows the 
results.  We can see that there is an overall 
server latency increase of 20% with CryptDB, 
which we consider modest. The proxy adds an 
average of 0.60 ms to a query; of that time, 24% 
is spent in MySQL proxy, 23% is spent in 
encryption and decryption, and the remaining  
53% is spent parsing and processing queries. § The cryptographic overhead is relatively small 
 

because most of our encryption schemes are 
efficient; Figure 13 shows their performance. 
OPE and HOM are the slowest, but the 
ciphertext pre-computing and caching 
optimization ( 3.5) masks the high latency of 
queries requiring OPE and HOM. Proxy× in 
Figure 12 shows the latency without these 
optimizations, which is significantly higher for 
the corresponding query types. SELECT queries 
that involve a SUM use HOM but do not benefit 
from this optimization, because the proxy 
performs decryption, rather than encryption. 

In all TPC-C experiments, the proxy used less  
than 20 MB of memory. Caching ciphertexts for  
the 30, 000 most common values for OPE  
accounts for about 3 MB, and pre-computing  
ciphertexts and randomness for 30,000 values  
at HOM required 10 MB. 
 

8.4.2 Mult 
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Figure 14: Throughput comparison for phpBB. “MySQL” denotes 
phpBB running directly on MySQL. “MySQL+proxy” denotes phpBB 
running on an unencrypted MySQL database but going through 
MySQL proxy. “CryptDB” denotes phpBB running on CryptDB with 
notably sensitive fields annotated and the database appropriately 
encrypted. Most HTTP requests involved 
tens  of  SQL queries each.  Percentages indicate throughput 

reduction relative to MySQL.   ×  
    

 

DB 
 

 Login R post W post R msg W msg   
         

 

 MySQL   60 ms 50 ms 133 ms 61 ms 237 ms 
 CryptDB   67 ms 60 ms 151 ms 73 ms 251 ms 
           
Figure 15: Latency for HTTP requests that heavily use encrypted 
fields in phpBB for MySQL and CryptDB. R and W stand for 
read and write. 

×  
 

read posts, as well as write and read private 
messages. We pre-loaded forums and user 

mailboxes with messages. In this experiment, we 
co-located the MySQL DBMS, the CryptDB 
proxy, and the web application server on a 

single-core machine, to ensure we do not add 
additional resources for a separate proxy server 

machine to the system in the CryptDB 
configuration. In practice, an administrator would 
likely run the CryptDB proxy on another machine 

for security. Figure 14 shows the throughput of 
phpBB in three different con- figurations: (1) 

connecting to a stock MySQL server, (2) 
connecting to a stock MySQL server through 

MySQL proxy, and (3) connecting to CryptDB, 
with notably sensitive fields encrypted as 

summarized in Figure 9, which in turn uses a 
stock MySQL server to store encrypted data. 

The results show that phpBB incurs an overall 
throughput loss of just 14.5%, and that about 

half of this loss comes from inefficiencies in 
MySQL proxy unrelated to CryptDB. Fig- ure 15 

further shows the end-to-end latency for five 
types of phpBB requests. The results show that 

CryptDB adds 7–18 ms (6–20%) of  
processing time per request. 

secure onion layers, such as RND, is fast, and 
needs to be performed  
only once per column for the lifetime of the system.2 Removing a 
layer of RND requires AES decryption, which our experimental 
machine can perform at 200 MB/s per core. Thus, removing an 

onion layer is bottlenecked by the speed at which the∼DBMS 
server can copy a column from disk for disk-bound databases. 

 

9 RELATED WORK 
 
Search and queries over encrypted data. Song et al. [46] 
describe cryptographic tools for performing keyword search 
over encrypted data, which we use to implement SEARCH. 
Amanatidis et al. [2] 
 

8.4.3 Stora  

ge 
 
CryptDB increases the amount of the data stored 
in the DBMS, because it stores multiple onions for 
the same field, and because ciphertexts are larger 
than plaintexts for some encryption schemes. For 
TPC-C, CryptDB increased the database size by 
3.76 , mostly due to cryptographic expansion of 
integer fields encrypted with HOM (which expand 
from 32 bits to 2048 bits); strings and binary data 
remains roughly the same size. For phpBB, the 
database size using an unencrypted system was 
2.6 MB for a workload of about 1,000 private 
messages and 1,000 forum posts generated by 10 
users. The same workload on CryptDB had a 
database of 3.3 MB, about 1.2 larger. Of the 0.7 
MB increase, 230 KB is for storage of access 
keys, 276 KB is for public keys and external keys, 
and 166 KB is due to expansion of encrypted 
fields. 
 

8.4.4 Adjus 

table 

Encry  

ption 
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propose methods for exact searches that do not 
require scanning the entire database and could be 
used to process certain restricted SQL queries. Bao 
et al. [3] extend these encrypted search methods to 
the multi-user case. Yang et al. [51] run selections 
with equality predicates over encrypted data. 
Evdokimov and Guenther present methods for the 
same selections, as well as Cartesian products and 
projections [15]. Agrawal et al. develop a statistical 
encoding that preserves the order of numerical data 
in a column [1], but it does not have sound 
cryptographic properties, unlike the scheme we use 
[4]. Boneh and Waters show public-key schemes for 
comparisons, subset checks, and conjunctions of 
such queries over encrypted data [5], but these 
schemes have ciphertext lengths that are exponential 
in the length of the plaintext, limiting their practical 
applicability.  

When applied to processing SQL on encrypted data, 

these tech- niques suffer from some of the following 

limitations: certain basic queries are not supported or 

are too inefficient (especially joins and order checks), 

they require significant client-side query processing, 

users either have to build and maintain indexes on the 

data at the server or to perform sequential scans for 

every selection/search, and implementing these 

techniques requires unattractive changes to the innards 

of the DBMS.  
Some researchers have developed prototype 

systems for subsets of SQL, but they provide no 
confidentiality guarantees, require a significant DBMS 
rewrite, and rely on client-side processing [9, 12, 22]. 
For example, Hacigumus et al. [22] heuristically split 
the domain of possible values 
Adjustable query-based encryption involves 
decrypting columns to  
lower-security onion levels.  Fortunately, decryption for the more- 2Unless the administrator periodically re-encrypts 
data/columns. 
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for each column into partitions, storing the 
partition number unencrypted for each data item, 
and rely on extensive client-side filtering of query 
results. Chow et al. [8] require trusted entities 
and two non-colluding untrusted DBMSes. 

Untrusted servers. SUNDR [28] uses 

cryptography to provide privacy and integrity in a file 

system on top of an untrusted file server. Using a 

SUNDR-like model, SPORC [16] and Depot [30] 

show how to build low-latency applications, running 

mostly on the clients, without having to trust a 

server. However, existing server-side appli-cations 

that involve separate database and application 

servers cannot be used with these systems unless 

they are rewritten as distributed client-side 

applications to work with SPORC or Depot. Many 

appli- cations are not amenable to such a structure. 

Companies like Navajo Systems and 
Ciphercloud provide a trusted application-level 
proxy that intercepts network traffic be- tween 
clients and cloud-hosted servers (e.g., IMAP), and 
encrypts sensitive data stored on the server. 
These products appear to break up sensitive data 
(specified by application-specific rules) into tokens 
(such as words in a string), and encrypt each of 
these tokens using an order-preserving encryption 
scheme, which allows token-level searching and 
sorting. In contrast, CryptDB supports a richer set 
of operations (most of SQL), reveals only relations 
for the necessary classes of computation to the 
server based on the queries issued by the 
application, and allows chaining of encryption 
keys to user passwords, to restrict data leaks from 
a compromised proxy. 



 
Disk encryption. Various commercial database 

products, such as Oracle’s Transparent Data 

Encryption [34], encrypt data on disk, but decrypt it 

to perform query processing. As a result, the server 

must have access to decryption keys, and an 

adversary compromising the DBMS software can 

gain access to the entire data.  
Software security. Many tools help 

programmers either find or mitigate mistakes in 
their code that may lead to vulnerabilities, 
including static analysis tools like PQL [29, 31] 
and UrFlow [7], and runtime tools like Resin [52] 
and CLAMP [36]. In contrast, CryptDB provides 
confidentiality guarantees for user data even if 
the adversary gains complete control over the 
application and database servers. These tools 
provide no guarantees in the face of this threat, 
but in contrast, CryptDB cannot provide 
confidentiality in the face of vulnerabilities that 
trick the user’s client machine into issuing 
unwanted requests (such as cross-site scripting 
or cross-site request forgery vulnerabilities in 
web applications). As a result, using CryptDB 
together with these tools should improve overall 
application security.  

Rizvi et al. [41] and Chlipala [7] specify and 
enforce an applica- tion’s security policy over 
SQL views. CryptDB’s SQL annotations can 
capture most of these policies, except for result 
processing being done in the policy’s view, such 
as allowing a user to view only aggregates of 
certain data. Unlike prior systems, CryptDB 
enforces SQL-level policies cryptographically, 
without relying on compile-time or run-time 
permission checks.  

Privacy-preserving aggregates. Privacy-
preserving data inte- gration, mining, and 
aggregation schemes are useful [26, 50], but are 
not usable by many applications because they 
support only spe- cialized query types and 
require a rewrite of the DBMS. Differential 
privacy [14] is complementary to CryptDB; it 
allows a trusted server to decide what answers 
to release and how to obfuscate answers to 
aggregation queries to avoid leaking information 
about any specific record in the database.  

Query integrity. Techniques for SQL query 
integrity can be integrated into CryptDB because 
CryptDB allows relational queries on encrypted 
data to be processed just like on plaintext. 
These methods can provide integrity by adding a 
MAC to each tuple [28, 42], freshness using 
hash chains [38, 42], and both freshness and 

completeness of query results [33]. In addition, 
the client can verify the results of aggregation 
queries [48], and provide query assurance for 
most read queries [45].  

Outsourced databases. Curino et al. advocate 
the idea of a relational cloud [11], a context in 
which CryptDB fits well. 
 

10 CONCLUSION 
 
We presented CryptDB, a system that provides a 

practical and strong level of confidentiality in the 

face of two significant threats con- fronting 

database-backed applications: curious DBAs and 

arbitrary compromises of the application server and 

the DBMS. CryptDB meets its goals using three 

ideas: running queries efficiently over encrypted 

data using a novel SQL-aware encryption strategy, 

dy- namically adjusting the encryption level using 

onions of encryption to minimize the information 

revealed to the untrusted DBMS server, and 

chaining encryption keys to user passwords in a way 

that allows only authorized users to gain access to 

encrypted data.  
Our evaluation on a large trace of 126 million 

SQL queries from a production MySQL server 

shows that CryptDB can support opera- tions over 

encrypted data for 99.5% of the 128,840 columns 

seen in the trace. The throughput penalty of 

CryptDB is modest, resulting in a reduction of  
14.5–26% on two applications as compared to 
unmod- ified MySQL. Our security analysis 
shows that CryptDB protects most sensitive fields 
with highly secure encryption schemes for six 
applications. The developer effort consists of 11– 
13 unique schema 
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annotations and 2–7 lines of source code 
changes to express relevant privacy policies 
for 22–103 sensitive fields in three multi-user 
web applications.  

The source code for our implementation 
is available for download at 
http://css.csail.mit.edu/cryptdb/. 
 

ACKNOWLEDGMENTS 
 
We thank Martin Abadi, Brad Chen, Carlo 
Curino, Craig Harris, Evan Jones, Frans 
Kaashoek, Sam Madden, Mike Stonebraker, 
Mike Walfish, the anonymous reviewers, and 
our shepherd, Adrian Perrig, for their feedback. 
Eugene Wu and Alvin Cheung also provided 
useful advice. We also thank Geoffrey Thomas, 
Quentin Smith, Mitch Berger, and the rest of the 
scripts.mit.edu maintainers for providing us with 
SQL query traces. This work was supported by 
the NSF (CNS-0716273 and IIS-1065219) and 
by Google. 
 

REFERENCES 
 
[1]R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order 

preserving encryption for numeric data. In Proceedings of 
the 2004 ACM SIGMOD International Conference on 
Management of Data, Paris, France, June 2004.  

[2]G. Amanatidis, A. Boldyreva, and A. O’Neill. Provably-
secure schemes for basic query support in outsourced 
databases. In Pro- ceedings of the 21st Annual IFIP WG 
11.3 Working Conference on Database and Applications 
Security, Redondo Beach, CA, July 2007.  

[3]F. Bao, R. H. Deng, X. Ding, and Y. Yang. Private query on 
encrypted data in multi-user settings. In Proceedings of the 
4th International Conference on Information Security 
Practice and Experience, Sydney, Australia, April 2008.  

[4]A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. Order-
preserving symmetric encryption. In Proceedings of the 
28th Annual International Conference on the Theory 
and Applica- tions of Cryptographic Techniques 
(EUROCRYPT), Cologne, Germany, April 2009.  

[5]D. Boneh and B. Waters. Conjunctive, subset, and 
range queries on encrypted data. In Proceedings of the 
4th Conference on Theory of Cryptography, 2007.  

[6]A. Chen. GCreep: Google engineer stalked teens, spied on 
chats.  

Gawker, September 2010. http://gawker.com/5637234/. 
[7]A. Chlipala. Static checking of dynamically-varying 
security  

policies in database-backed applications. In Proceedings 
of the 9th Symposium on Operating Systems Design and 
Implementa- tion, Vancouver, Canada, October 2010.  

[8]S. S. M. Chow, J.-H. Lee, and L. Subramanian. Two-party 
com- putation model for privacy-preserving queries over 
distributed databases. In Proceedings of the 16th 
Network and Distributed System Security Symposium, 
February 2009.  

[9]V. Ciriani, S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. 
Para- boschi, and P. Samarati. Keep a few: 
Outsourcing data while maintaining confidentiality. In 
Proceedings of the 14th Euro- pean Symposium on 
Research in Computer Security, September 2009.  

[10]M. Cooney. IBM touts encryption innovation; new technology 

performs calculations on encrypted data without decrypting 
it. Computer World, June 2009. 

[11]C. Curino, E. P. C. Jones, R. A. Popa, N. Malviya, E. Wu, 
S. Madden, H. Balakrishnan, and N. Zeldovich. Relational 
cloud: A database-as-a-service for the cloud. In 
Proceedings of the 5th Biennial Conference on Innovative  
Data Systems Re- search, pages 235–241, Pacific Grove, 
CA, January 2011.  

[12]E. Damiani, S. D. C. di Vimercati, S. Jajodia, S. 
Paraboschi, and P. Samarati. Balancing confidentiality 
and efficiency in un- trusted relational DBMSs. In 
Proceedings of the 10th ACM Con- ference on Computer 
and Communications Security, Washing- ton, DC, 
October 2003. 

 
36 

http://css.csail.mit.edu/cryptdb/
http://css.csail.mit.edu/cryptdb/
http://gawker.com/5637234/
http://gawker.com/5637234/


[13]A. Desai. New paradigms for constructing symmetric encryp- tion schemes secure against chosen-ciphertext attack. In Pro- ceedings of the 20th 
Annual International Conference on Ad- vances in Cryptology, pages 394–412, August 2000.  

[14]C. Dwork. Differential privacy: a survey of results. In Proceed- ings of the 5th International Conference on Theory and Applica- tions of Models of 
Computation, Xi’an, China, April 2008. 

[15]S. Evdokimov and O. Guenther. Encryption techniques for se- cure database outsourcing. Cryptology ePrint Archive, Report 2007/335.  
[16]A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten. SPORC: Group collaboration using untrusted cloud resources. In Proceedings of 

the 9th Symposium on Operating Systems De- sign and Implementation, Vancouver, Canada, October 2010.  
[17]T. Ge and S. Zdonik. Answering aggregation queries in a secure system model. In Proceedings of the 33rd International Con- ference on Very 

Large Data Bases, Vienna, Austria, September 2007.  
[18]R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing computation to untrusted workers. In Advances in Cryptology 

(CRYPTO), Santa Barbara, CA, August 2010.  
[19]C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing, 

Bethesda, MD, May–June 2009. 
 
[20]O.  Goldreich. Foundations of Cryptography: Volume I Basic Tools. Cambridge University Press, 2001. 

[21]A. Greenberg. DARPA will spend 20 million to search for crypto’s holy grail. Forbes, April 2011.  
[22]H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data in the database-service-provider model. In Proceedings of the 

2002 ACM SIGMOD International Confer- ence on Management of Data, Madison, WI, June 2002. 
[23]J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, 

W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum, and  
E. W. Felten. Lest we remember: Cold boot attacks on encryp- tion keys. In Proceedings of the 17th Usenix Security Sympo- sium, San Jose, CA, 
July–August 2008. 

[24]S. Halevi and P. Rogaway. A tweakable enciphering mode. In 
Advances in Cryptology (CRYPTO), 2003.  

[25]V. Kachitvichyanukul and B. W. Schmeiser. Algorithm 668: H2PEC: Sampling from the hypergeometric distribution. ACM Transactions on 
Mathematical Software, 14(4):397–398, 1988.  

[26]M. Kantarcioglu and C. Clifton. Security issues in querying encrypted data. In Proceedings of the 19th Annual IFIP 
WG 11.3 Working Conference on Database and Applications Secu- rity, Storrs, CT, August 2005.  

[27]E. Kohler. Hot crap! In Proceedings of the Workshop on Or- ganizing Workshops, Conferences, and Symposia for Computer Systems, San Francisco, 
CA, April 2008.  

[28]J. Li, M. Krohn, D. Mazi e`res, and D. Shasha. Secure untrusted data repository (SUNDR). In Proceedings of the 6th Symposium on Operating 
Systems Design and Implementation, pages 91– 106, San Francisco, CA, December 2004.  

[29]V. B. Livshits and M. S. Lam. Finding security vulnerabilities in Java applications with static analysis. In Proceedings of the 14th Usenix Security 
Symposium, pages 271–286, Baltimore, MD, August 2005.  

[30]P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and M. Walfish. Depot: Cloud storage with minimal trust. In Proceedings of the 
9th Symposium on Operating Systems Design and Implementation, Vancouver, Canada, October 2010. 

[31]M. Martin, B. Livshits, and M.  Lam. Finding  application  er- rors and security flaws using PQL: a program query language.  In Proceedings of the 
2005 Conference on Object-Oriented Pro- gramming, Systems, Languages and Applications, pages 365– 383, San Diego, CA, October 2005. 

[32]National Vulnerability Database. CVE statistics. http://web. nvd.nist.gov/view/vuln/statistics, February 2011. 

http://web.nvd.nist.gov/view/vuln/statistics
http://web.nvd.nist.gov/view/vuln/statistics


[33]V. H. Nguyen, T. K. Dang, N. T. Son, and J. Kung. Query as- surance verification for dynamic outsourced XML databases. In Proceedings of the 
2nd Conference on Availability, Reliability and Security, Vienna, Austria, April 2007.  

[34] Oracle Corporation. Oracle advanced security. http: 
//www.oracle.com/technetwork/database/options/ advanced-security/.  

[35]P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Proceedings of the 18th Annual Inter- national Conference on 
the Theory and Applications of Cryp- tographic Techniques (EUROCRYPT), Prague, Czech Republic, May 1999. 

[36]B. Parno, J. M. McCune, D. Wendlandt, D. G. Andersen, and  
A. Perrig. CLAMP: Practical prevention of large-scale data leaks. In Proceedings of the 30th IEEE Symposium on Security and Privacy, Oakland, 
CA, May 2009. 

[37]R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakr- ishnan. CryptDB web site. http://css.csail.mit.edu/ cryptdb/. 
[38]R. A. Popa, J. R. Lorch, D. Molnar, H. J. Wang, and L. Zhuang.  

Enabling security in cloud storage SLAs with CloudProof. In Proceedings of 2011 USENIX Annual Technical Conference, Portland, OR, 2011. [39]R. A. 

Popa, N. Zeldovich, and H. Balakrishnan. CryptDB: A practical encrypted relational DBMS. Technical Report MIT- CSAIL-TR-2011-005, MIT 

Computer Science and Artificial In- telligence Laboratory, Cambridge, MA, January 2011. 
[40]Privacy Rights Clearinghouse. Chronology of data breaches.  

http://www.privacyrights.org/data-breach. 
[41]S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy. Extending query rewriting techniques for fine-grained access control. In Proceedings of the 2004 

ACM SIGMOD International Confer- ence on Management of Data, Paris, France, June 2004. 
[42]H. Shacham, N. Modadugu, and D. Boneh. Sirius: Securing remote untrusted storage. In Proceedings of the 10th Network and Distributed System 

Security Symposium, 2003. 
[43]E. Shi, J. Bethencourt, H. Chan, D. Song, and A. Perrig. Multi- dimensional range query over encrypted data.  In Proceedings  of the 28th IEEE 

Symposium on Security and Privacy, Oakland, CA, May 2007. 
[44]V. Shoup. NTL: A library for doing number theory. http:// www.shoup.net/ntl/, August 2009.  
[45]R. Sion. Query execution assurance for outsourced databases. In Proceedings of the 31st International Conference on Very Large Data Bases, 

pages 601–612, Trondheim, Norway, August– September 2005.  
[46]D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted data. In Proceedings of the 21st IEEE Symposium on 

Security and Privacy, Oakland, CA, May 2000. 
[47]M. Taylor. MySQL proxy. https://launchpad.net/ mysql-proxy. 

[48]B. Thompson, S. Haber, W. G. Horne, T. S, and D. Yao. Privacy- preserving computation and verification of aggregate queries on outsourced 
databases. Technical Report HPL-2009-119, HP Labs, 2009.  

[49]E. P. Wobber, M. Abadi, M. Burrows, and B. Lampson. Au- thentication in the Taos operating system. ACM Transactions on Computer Systems, 
12(1):3–32, 1994.  

[50]L. Xiong, S. Chitti, and L. Liu. Preserving data privacy for out- sourcing data aggregation services. Technical Report TR-2007- 013, Emory University, 
Department of Mathematics and Com- puter Science, 2007.  

[51]Z. Yang, S. Zhong, and R. N. Wright. Privacy-preserving queries on encrypted data. In European Symposium on Research in Computer Security, 
2006.  

[52]A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek. Improving application security with data flow assertions. In Proceedings of the 22nd ACM 
Symposium on Operating Systems Principles, pages 291–304, Big Sky, MT, October 2009. 

http://www.oracle.com/technetwork/database/options/advanced-security/
http://www.oracle.com/technetwork/database/options/advanced-security/
http://www.oracle.com/technetwork/database/options/advanced-security/
http://css.csail.mit.edu/cryptdb/
http://css.csail.mit.edu/cryptdb/
http://www.privacyrights.org/data-breach
http://www.privacyrights.org/data-breach
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/
https://launchpad.net/mysql-proxy
https://launchpad.net/mysql-proxy

